群论入门学习笔记

文章介绍了群的概念,包括集合上的运算、封闭性、结合律、单位元和逆元的性质。它还讨论了半群、含幺半群以及群的充要条件,如左右消去律。此外,提到了置换群,特别是n次对称群和n次置换群作为子群的例子。文章最后探讨了子群的定义及其等价条件。
摘要由CSDN通过智能技术生成

  1. 组成:集合 G G G,与集合上的运算 ∗ *
  2. 性质:
    1. 封闭性: ∀ a , b ∈ G \forall a , b \in G a,bG a ∗ b ∈ G a * b \in G abG
    2. 结合律: ∀ a , b , c ∈ G \forall a,b,c \in G a,b,cG ( a ∗ b ) ∗ c = a ∗ ( b ∗ c ) (a * b) * c = a * (b * c) (ab)c=a(bc)
    3. 单位元(一个): ∃ e ∈ G , ∀ a ∈ G \exists e \in G , \forall a \in G eG,aG a ∗ e = e ∗ a = a a * e = e * a = a ae=ea=a
    4. 逆元(所有): ∀ a ∈ G \forall a \in G aG ∃ b ∈ G \exists b \in G bG, a ∗ b = b ∗ a = e a * b = b * a = e ab=ba=e,记为 a − 1 a^{-1} a1
  3. 表示:若满足以上所有性质,则称 ( G , ∗ ) (G , *) (G,) 是一个群,简称 G G G 是一个群, G G G 关于运算 ∗ * 组成一个群
  4. 例:
    1. ∣ G ∣ = 2 |G| = 2 G=2 ( G , ∗ ) (G , *) (G,) 是群,设 G = { e , a } G = \{ {e,a} \} G={e,a}
      ∗ e a e e a a a e \def\arraystretch{1.5} \begin{array}{c|} {*} & e & a \\ \hline e & e & a \\ a & a & e \end{array} eaeeaaae
    2. ∣ G ∣ = 3 |G| = 3 G=3 ( G , ∗ ) (G , *) (G,) 是群,设 G = { e , a , b } G = \{ {e,a,b} \} G={e,a,b}
      ∗ e a b e e a b a a b e b b e a \def\arraystretch{1.5} \begin{array}{c|} {*} & e & a & b \\ \hline e & e & a & b \\ a & a & b & e \\ b & b & e & a \end{array} eabeeabaabebbea

注:若 a ∗ b = a ∗ c    ⟹    a − 1 ∗ a ∗ b = a − 1 ∗ a ∗ c    ⟹    b = c a * b = a * c \implies a^{-1} * a * b = a^{-1} * a * c \implies b = c ab=aca1ab=a1acb=c,不符合群性质

  1. 定理:一个群内,单位元唯一
    证明:
    假设群 ( G , ∗ ) 单位元为 e 1 , e 2 ∵ e 1 ∗ e 2 = e 1 = e 2    ⟹    e 1 = e 2 , 不符合群的性质 ∴ 一个群内,单位元唯一 \text{假设群} (G , *) 单位元为 e_1,e_2 \\ \because e_1 * e_2 = e_1 = e_2 \implies e_1 = e_2 , \text{不符合群的性质} \\ \therefore \text{一个群内,单位元唯一} 假设群(G,)单位元为e1,e2e1e2=e1=e2e1=e2,不符合群的性质一个群内,单位元唯一

半群

  1. 满足群的性质 1、2
  2. 定义
    • 左单位元 e L : ∀ a ∈ G , e L ∗ a = a e_L : \forall a \in G , e_L * a = a eL:aG,eLa=a
    • 右单位元 e R : ∀ a ∈ G , a ∗ e R = a e_R : \forall a \in G , a * e_R = a eR:aG,aeR=a
  3. 定理:若一个半群既有 e L e_L eL,又有 e R e_R eR,则: e L = e L ∗ e R = e R    ⟹    e L = e R e_L = e_L * e_R = e_R \implies e_L = e_R eL=eLeR=eReL=eR

含幺半群

  1. 满足群的性质 1、2、3
  2. 定义:
    • 左逆元: a L − 1 → a L − 1 ∗ a = e a_L^{-1} \to a_L^{-1} * a = e aL1aL1a=e
    • 右逆元: a R − 1 → a ∗ a R − 1 = e a_R^{-1} \to a * a_R^{-1} = e aR1aaR1=e
    • 定理: a L − 1 = a R − 1 a_L^{-1} = a_R^{-1} aL1=aR1
      证明: a L − 1 = a L − 1 ∗ e = a L − 1 ∗ ( a ∗ a R − 1 ) = e ∗ a R − 1 = a R − 1 a_L^{-1} = a_L^{-1} * e = a_L^{-1} * (a * a_R^{-1}) = e * a_R^{-1} = a_R^{-1} aL1=aL1e=aL1(aaR1)=eaR1=aR1
  3. 定理:
    • 逆元唯一
    • ( a − 1 ) − 1 = a (a^{-1})^{-1} = a (a1)1=a
      证明: a ∗ a − 1 = a − 1 ∗ a = e    ⟹    ( a − 1 ) − 1 = a a * a^{-1} = a^{-1} * a = e \implies (a^{-1})^{-1} = a aa1=a1a=e(a1)1=a
    • ( a ∗ b ) − 1 = b − 1 ∗ a − 1 (a * b)^{-1} = b^{-1} * a^{-1} (ab)1=b1a1
      证明:
      ∵ e = a ∗ a − 1 = a ∗ e ∗ a − 1 = a ∗ b ∗ b − 1 ∗ a − 1 = ( a ∗ b ) ∗ b − 1 ∗ a − 1 ∴ ( a ∗ b ) − 1 = b − 1 ∗ a − 1 \because e = a * a^{-1} = a * e * a^{-1} = a * b * b^{-1} * a^{-1} = (a * b) * b^{-1} * a^{-1} \\ \therefore (a * b)^{-1} = b^{-1} * a^{-1} e=aa1=aea1=abb1a1=(ab)b1a1(ab)1=b1a1
    • ( a n ) − 1 = ( a − 1 ) n (a^n)^{-1} = (a^{-1})^n (an)1=(a1)n,证明过程同上

一些定理

  1. 定理一:半群 ( G , ∗ ) (G , * ) (G,) 是群的充要条件,同时满足两条:

    1. 有左单位元 e L , ∀ a ∈ G , e L ∗ a = a e_L ,\forall a \in G , e_L * a = a eL,aG,eLa=a
    2. ∀ a ∈ G \forall a \in G aG,有如下形式的左逆元 a − 1 ∈ G , a L − 1 ∗ a = e L a^{-1} \in G , a_L^{-1} * a = e_L a1G,aL1a=eL

    证明:

    • 必要性( 群    ⟹    1、2 \text{群} \implies \text{1、2} 12):
      ∵ ( G , ∗ ) 是群 ∴ 由群的性质3、4可知1、2成立 \because (G , *) 是群 \\ \therefore \text{由群的性质3、4可知1、2成立} (G,)是群由群的性质34可知12成立
    • 充分性( 1、2    ⟹    群 \text{1、2} \implies \text{群} 12):
      ∀ a ∈ G , ∵ a L − 1 ∗ a = e L ( a L − 1 ) L − 1 ∗ a L − 1 = e L ∴ a ∗ a L − 1 = e L ∗ a ∗ a L − 1 = ( a L − 1 ) L − 1 ∗ a L − 1 ∗ a ∗ a L − 1 = ( a L − 1 ) L − 1 ∗ e L ∗ a L − 1 = ( a L − 1 ) L − 1 ∗ a L − 1 = e L ∴ a L − 1 是  a  的逆元   ∀ a ∈ G , ∵ a ∗ e L = a ∗ a L − 1 = e L ∗ a = a ∴ e L 是单位元   ∴ ( G , ∗ ) 是群 \forall a \in G , \because a_L^{-1} * a = e_L \kern{2pc} (a_L^{-1})_L^{-1} * a_L^{-1} = e_L \\ \therefore a * a_L^{-1} = e_L * a * a_L^{-1} = (a_L^{-1})_L^{-1} * a_L^{-1} * a * a_L^{-1} = (a_L^{-1})_L^{-1} * e_L * a_L^{-1} = (a_L^{-1})_L^{-1} * a_L^{-1} = e_L \\ \therefore a_L^{-1} \text{是 } a \text{ 的逆元} \\ \ \\ \forall a \in G , \because a * e_L = a * a_L^{-1} = e_L * a = a \\ \therefore e_L \text{是单位元} \\ \ \\ \therefore (G , *) \text{是群} aG,aL1a=eL(aL1)L1aL1=eLaaL1=eLaaL1=(aL1)L1aL1aaL1=(aL1)L1eLaL1=(aL1)L1aL1=eLaL1 a 的逆元 aG,aeL=aaL1=eLa=aeL是单位元 (G,)是群
  2. 定理二:半群 ( G , ∗ ) (G , * ) (G,) 是群的充要条件:

    1. ∀ a , b ∈ G , a ∗ x = b , y ∗ a = b 均有解 \forall a,b \in G , a * x = b , y * a = b \text{均有解} a,bG,ax=b,ya=b均有解

    证明:

    • 必要性( 群    ⟹    1 \text{群} \implies \text{1} 1):
      ∵ ( G , ∗ )  是群 ∴ x = a − 1 ∗ b , y = b ∗ a − 1 \because (G , *) \text{ 是群} \\ \therefore x = a^{-1} * b , y = b * a^{-1} (G,) 是群x=a1b,y=ba1
    • 充分性( 1    ⟹    群 \text{1} \implies \text{群} 1):
      取  b = a , 解  y ∗ a = b , 得  y = e  (注:这里的e是未知数) ∀ c ∈ G , 解  a ∗ x = c , 得  x = d ∴ e ∗ c = e ∗ a ∗ d = a ∗ d = c ∴ e  为左单位元 ∵ ∀ c ∈ G , 解  y ∗ c = e , 得  y = c − 1 ∴ G 有左逆元 ∴ 由定理一得: ( G , ∗ )  是群 \text{取 } b = a , \text{解 } y *a = b , \text{得 } y = e \text{ (注:这里的e是未知数)}\\ \forall c \in G , \text{解 } a * x = c , \text{得 } x = d \\ \therefore e * c = e * a * d = a * d = c \\ \therefore e \text{ 为左单位元} \\ \because \forall c \in G , \text{解 } y * c = e , \text{得 } y = c^{-1} \\ \therefore G \text{有左逆元} \\ \therefore \text{由定理一得:} (G , *) \text{ 是群}  b=a, ya=b, y=e (:这里的e是未知数)cG, ax=c, x=dec=ead=ad=ce 为左单位元cG, yc=e, y=c1G有左逆元由定理一得:(G,) 是群
  3. 定理三:有限半群 ( G , ∗ ) (G , *) (G,) 是群的充要条件(左右消去律成立):

    1. a ∗ x = a ∗ y    ⟹    x = y a * x = a * y \implies x = y ax=ayx=y
    2. x ∗ a = y ∗ a    ⟹    x = y x * a = y * a \implies x = y xa=yax=y

    证明:

    • 必要性( 群    ⟹    1、2 \text{群} \implies \text{1、2} 12):
      ∵ ( G , ∗ )  是群 ∴ a ∗ x = a ∗ y    ⟹    a − 1 ∗ a ∗ x = a − 1 ∗ a ∗ y    ⟹    e ∗ x = e ∗ y    ⟹    x = y 同理 , x ∗ a = y ∗ a    ⟹    x = y \because (G , *) \text{ 是群} \\ \therefore a * x = a * y \implies a^{-1} * a * x = a^{-1} * a * y \implies e * x= e * y \implies x = y \\ \text{同理} , x * a = y * a \implies x = y (G,) 是群ax=aya1ax=a1ayex=eyx=y同理,xa=yax=y
    • 充分性( 1、2    ⟹    群 \text{1、2} \implies \text{群} 12):
      设  G = { a 1 , a 2 , a 3 , . . . , a n } ∀ a ∈ G , 令 G ′ = { a ∗ a 1 , a ∗ a 2 , a ∗ a 3 , . . . , a ∗ a n } , G ′ ⊆ G 若  a ∗ a i = a ∗ a j , 则  a i = a j ∴ ∣ G ′ ∣ = n = ∣ G ∣ ∴ G ′ = G ∴ ∀ b ∈ G , ∃ a ∗ x ∈ G ′ , a ∗ x = b , 同理 , y ∗ a = b 有解 根据定理二可以得出 , ( G , ∗ )  是群 \text{设 } G = \{ a_1,a_2,a_3,...,a_n \} \\ \forall a \in G , \text{令} G' = \{ a * a_1,a * a_2,a * a_3,...,a * a_n \} , G' \subseteq G \\ \text{若 } a * a_i = a * a_j , \text{则 } a_i = a_j \\ \therefore |G'| = n = |G| \\ \therefore G' = G \\ \therefore \forall b \in G , \exist a * x \in G' , a * x = b , \text{同理} , y * a = b \text{有解} \\ \text{根据定理二可以得出} , (G , *) \text{ 是群}  G={a1,a2,a3,...,an}aG,G={aa1,aa2,aa3,...,aan},GG aai=aaj, ai=ajG=n=GG=GbG,axG,ax=b,同理,ya=b有解根据定理二可以得出,(G,) 是群h

置换类群

  1. 置换: ( 1 , 2 , 3 , 4 4 , 1 , 3 , 2 ) \begin{pmatrix} 1,2,3,4 \\ 4,1,3,2 \end{pmatrix} (1,2,3,44,1,3,2),指 1 → 4 , 2 → 1 , 3 → 3 , 4 → 2 1 \to 4 , 2 \to 1 , 3 \to 3 , 4 \to 2 14,21,33,42
    n阶置换: ( 1 , 2 , 3 , . . . , n t 1 , t 2 , t 3 , . . . , t n ) 逆: ( t 1 , t 2 , t 3 , . . . , t n 1 , 2 , 3 , . . . , n ) 其中  t 1 , t 2 , t 3 , . . . , t n 是  [ 1 , n ]  的全排列 \text{n阶置换:} \begin{pmatrix} 1, \kern{2pt} 2, \kern{2pt} 3, \kern{2pt} ..., \kern{2pt} n \\ t_1,t_2,t_3,...,t_n \end{pmatrix} \kern{2pc} \text{逆:} \begin{pmatrix} t_1,t_2,t_3,...,t_n \\ 1, \kern{2pt} 2, \kern{2pt} 3, \kern{2pt} ..., \kern{2pt} n \end{pmatrix} \kern{2pc} \text{其中 } t_1,t_2,t_3,...,t_n \text{是 } [1 , n] \text{ 的全排列} n阶置换:(1,2,3,...,nt1,t2,t3,...,tn)逆:(t1,t2,t3,...,tn1,2,3,...,n)其中 t1,t2,t3,...,tn [1,n] 的全排列
  2. 定义:
    S n = {   ( 1 , 2 , 3 , . . . , n t 1 , t 2 , t 3 , . . . , t n )    |    t 1 , t 2 , t 3 , . . . , t n 是  [ 1 , n ]  的全排列   } S_n = \Set{\begin{pmatrix} 1, \kern{2pt} 2, \kern{2pt} 3, \kern{2pt} ..., \kern{2pt} n \\ t_1,t_2,t_3,...,t_n \end{pmatrix} | t_1,t_2,t_3,...,t_n \text{是 } [1 , n] \text{ 的全排列}} Sn={(1,2,3,...,nt1,t2,t3,...,tn) t1,t2,t3,...,tn [1,n] 的全排列}
    运算  ∗ : ( t 1 , t 2 , t 3 , . . . , t n u 1 , u 2 , u 3 , . . . , u n ) ∗ ( 1 , 2 , 3 , . . . , n t 1 , t 2 , t 3 , . . . , t n ) = ( 1 , 2 , 3 , . . . , n u 1 , u 2 , u 3 , . . . , u n ) \text{运算 } * \text{:} \begin{pmatrix} t_1, \kern{2pt} t_2, \kern{2pt} t_3, \kern{2pt} ..., \kern{2pt} t_n \\ u_1,u_2,u_3,...,u_n \end{pmatrix} * \begin{pmatrix} 1, \kern{2pt} 2, \kern{2pt} 3, \kern{2pt} ..., \kern{2pt} n \\ t_1,t_2,t_3,...,t_n \end{pmatrix} = \begin{pmatrix} 1,\kern{3pt}2,\kern{3pt}3,\kern{3pt}...,\kern{3pt}n \\ u_1,u_2,u_3,...,u_n \end{pmatrix} \kern{2pc} 运算 (t1,t2,t3,...,tnu1,u2,u3,...,un)(1,2,3,...,nt1,t2,t3,...,tn)=(1,2,3,...,nu1,u2,u3,...,un) 运算顺序从右往左
  3. S n S_n Sn 关于运算 ∗ * 构成群,我们可称其为 n n n 次对称群
    1. 封闭性显然
    2. 满足结合律
    3. 有单位元: ( 1 , 2 , 3 , . . . , n 1 , 2 , 3 , . . . , n ) \begin{pmatrix} 1,2,3,...,n \\ 1,2,3,...,n \end{pmatrix} (1,2,3,...,n1,2,3,...,n)
    4. 有逆元
  4. G ⊆ S n G \subseteq S_n GSn,且 ( G , ∗ ) (G , *) (G,) 为群,则称 ( G , ∗ ) (G , *) (G,) n n n 次置换群
    例:
    • G = { ( 1 , 2 , 3 , . . . , n 1 , 2 , 3 , . . . , n ) } G = \begin{Bmatrix} \begin{pmatrix} 1,2,3,...,n \\ 1,2,3,...,n \end{pmatrix} \end{Bmatrix} G={(1,2,3,...,n1,2,3,...,n)}
    • G = {   ( 1 , 2 , 3 , . . . , n a 1 , a 2 , a 3 , . . . , a n )    |    a i + 1 = a i + 1  或  a i + 1 = a i − ( n − 1 )   } G = \Set{\begin{pmatrix} 1, \kern{3pt} 2, \kern{3pt} 3, \kern{3pt} ..., \kern{3pt} n \\ a_1,a_2,a_3,...,a_n \end{pmatrix} | a_{i + 1} = a_i + 1 \text{ 或 } a_{i + 1} = a_i - (n - 1)} G={(1,2,3,...,na1,a2,a3,...,an) ai+1=ai+1  ai+1=ai(n1)}

子群

  1. 定义:设 ( G , ∗ ) (G , *) (G,) 是群,若 S ⊆ G , ( S , ∗ ) S \subseteq G , (S , *) SG,(S,) 是群,则称 S S S G G G 的一个子群(集合必须有包含关系)

  2. S ⊆ G S \subseteq G SG,且 S ≠ G S \not = G S=G,则 S S S G G G 的真子群( S ≤ G S \le G SG 表示 S S S G G G 的子群)
    例:

    1. n n n 次置换群是 n n n 次对称群的一个子群

    2. H 2 = {   2 ∗ a ∣ a ∈ Z   } , H 3 = {   3 ∗ a ∣ a ∈ Z   } , H m = {   m ∗ a ∣ a ∈ Z   } H_2 = \set{2 * a | a \in Z} , H_3 = \set{3 * a | a \in Z} , H_m = \set{m * a | a \in Z} H2={2aaZ},H3={3aaZ},Hm={maaZ}
      H 2 ∈ Z    ⟹    H 2 ∈ Q , H 2 ∈ R H 3 ∈ Z    ⟹    H 3 ∈ Q , H 3 ∈ R 当  m ∈ Z , H m ∈ Z 当  m ∈ Q , H m ∈ Q 当  m ∈ R , H m ∈ R H_2 \in Z \implies H_2 \in Q , H_2 \in R \\ \kern{10pt} H_3 \in Z \implies H_3 \in Q , H_3 \in R \\ \kern{9pt} \text{当 } m \in Z , H_m \in Z \kern{10pt} \text{当 } m \in Q , H_m \in Q \kern{10pt} \text{当 } m \in R , H_m \in R H2ZH2Q,H2RH3ZH3Q,H3R mZ,HmZ mQ,HmQ mR,HmR

    3. S ∈ Z : ∀ a , b ∈ S , a ∗ x + b ∗ y ∈ S ( x , y ∈ Z ) , ( a , b ) ∈ S S \in Z : \forall a,b \in S , a * x + b * y \in S (x , y \in Z) , (a , b) \in S SZ:a,bS,ax+byS(x,yZ),(a,b)S

      1. ( a , b ) ∣ a ∗ x + b ∗ y (a , b) | a * x + b * y (a,b)ax+by
      2. ∀ v ∈ Z , ( a , b ) ∣ v , ∃ x , y ∈ Z , 使得 a ∗ x + b ∗ y = v \forall v \in Z , (a , b) | v , \exist x,y \in Z , \text{使得} a * x + b * y = v vZ,(a,b)v,x,yZ,使得ax+by=v
      3. m m m 是除 0 0 0 以外, S S S 中绝对值最小的正数,则 S = H m S = H_m S=Hm

      证明:

      • m m m 不存在时:
        S = { 0 } , S = H 0 S = \{ 0 \} , S = H_0 S={0},S=H0
      • m m m 存在时:
        ∀ v ∈ S , 设  m   /    ∣    v , 则  ( m , ∣ v ∣ ) ∈ S 而  0 < ( m , ∣ v ∣ ) < m , 矛盾 故  S = H m \forall v \in S , \text{设 } m \mathrlap{\,/}{\;|} \:\, v , \text{则 } (m , |v|) \in S \\ \text{而 } 0 < (m , |v|) < m , \text{矛盾} \\ \text{故 } S = H_m vS, m/v, (m,v)S 0<(m,v)<m,矛盾 S=Hm
  3. 平凡子群: S = { 单位元 } G ≤ G S = \{ \text{单位元} \} \kern{2pc} G \leq G S={单位元}GG

  4. S S S G G G非空子集,则以下三条等价:

    1. S ≤ G S \leq G SG
    2. ∀ a , b ∈ S , 有  a ∗ b ∈ S , a − 1 ∈ S \forall a,b \in S , \text{有 } a * b \in S , a^{-1} \in S a,bS, abS,a1S
    3. ∀ a , b ∈ S , 有  a ∗ b − 1 ∈ S \forall a,b \in S , \text{有 } a * b^{-1} \in S a,bS, ab1S

    证明:

    • 1    ⟹    2 1 \implies 2 12
      ∵ S  是群 ∴ 2  成立 \because S \text{ 是群} \\ \therefore 2 \text{ 成立} S 是群2 成立
    • 2    ⟹    3 2 \implies 3 23
      ∵ b ∈ S ∴ b − 1 ∈ S ∴ a , b − 1 ∈ S ∴ a ∗ b − 1 ∈ S ∴ 3  成立 \because b \in S \kern{2pc} \therefore b^{-1} \in S \\ \therefore a,b^{-1} \in S \kern{2pc} \therefore a * b^{-1} \in S \\ \therefore 3 \text{ 成立} bSb1Sa,b1Sab1S3 成立
    • 3    ⟹    1 3 \implies 1 31
      ∀ a ∈ S , 在  G  中 , 有  e ∗ a = a ∗ e = a ∴ 在  S  中 , e  是  S  的单位元 ∀ a ∈ S , e ∈ S , 有  e ∗ a − 1 = a − 1 ∈ S ∴ S  中的每个元素都有逆元 ∀ a , b ∈ S , 有  b − 1 ∈ S ∴ a ∗ ( b − 1 ) − 1 ∈ S    ⟹    a ∗ b ∈ S ∴ S  中的运算满足封闭性 综上所述 , S  是  G  的子群 ∴ 1  成立 \forall a \in S , \text{在 } G \text{ 中} , \text{有 } e * a = a * e = a \\ \therefore \text{在 } S \text{ 中} , e \text{ 是 } S \text{ 的单位元} \\ \forall a \in S , e \in S , \text{有 } e * a^{-1} = a^{-1} \in S \\ \therefore S \text{ 中的每个元素都有逆元} \\ \forall a,b \in S , \text{有 } b^{-1} \in S \\ \therefore a * (b^{-1})^{-1} \in S \implies a * b \in S \\ \therefore S \text{ 中的运算满足封闭性} \\ \text{综上所述} , S \text{ 是 } G \text{ 的子群} \\ \therefore 1 \text{ 成立} aS, G , ea=ae=a S ,e  S 的单位元aS,eS, ea1=a1SS 中的每个元素都有逆元a,bS, b1Sa(b1)1SabSS 中的运算满足封闭性综上所述,S  G 的子群1 成立
  5. 定理:设 G G G 是有限群, S ⊆ G S \subseteq G SG S S S 非空, ∀ a , b ∈ S \forall a,b \in S a,bS,有 a ∗ b ∈ S a * b \in S abS,则 S ∈ G S \in G SG
    证明:
    ∀ a ∈ S : ∴ 1 a = a ∈ S 2 a = a ∗ a ∈ S 3 a = 2 a ∗ a ∈ S . . . . . . 设  ∣ S ∣ = n ∵ 1 a , 2 a , . . . , ( n + 1 ) a ∈ S ∴ ∃ i < j , 使得  i a = j a = i a ∗ ( j − i ) a 令  b = i a , f = ( j − i ) a ∈ S 则  b = b ∗ f 在群  G  中 , b − 1 ∈ G ∴ b − 1 ∗ b = b − 1 ∗ b ∗ f ∴ f = e e = ( j − i ) a  是  S  的单位元 当  j = i + 1 : e = ( i + 1 − i ) a , 即  a = e ∴ a − 1 = e ∈ S 当  j > i + 1 : a ∗ ( j − i − 1 ) a = ( j − i ) a = e ∴ a − 1 = ( j − i − 1 ) a ∈ S 综上所述 , S ≤ G \forall a \in S : \\ \therefore 1a = a \in S \\ \kern{10pt} 2a = a * a \in S \\ \kern{10pt} 3a = 2a * a \in S \\ \kern{10pt} ...... \\ \text{设 } |S| = n \\ \because 1a,2a,...,(n + 1) a \in S \\ \therefore \exist i < j , \text{使得 } ia = ja = ia * (j - i) a\\ \text{令 } b = ia , f = (j - i) a \in S \\ \text{则 } b = b * f \\ \text{在群 } G \text{ 中} , b^{-1} \in G \\ \therefore b^{-1} * b = b^{-1} * b * f \\ \therefore f = e \kern{2pc} e = (j - i) a \text{ 是 } S \text{ 的单位元} \\ \text{当 } j = i + 1 : \\ e = (i + 1 - i) a , \text{即 } a = e \\ \therefore a^{-1} = e \in S \\ \text{当 } j > i + 1 : \\ a * (j - i - 1) a = (j - i) a = e \\ \therefore a^{-1} = (j - i - 1) a \in S \\ \text{综上所述} , S \leq G aS:1a=aS2a=aaS3a=2aaS...... S=n1a,2a,...,(n+1)aSi<j,使得 ia=ja=ia(ji)a b=ia,f=(ji)aS b=bf在群 G ,b1Gb1b=b1bff=ee=(ji)a  S 的单位元 j=i+1:e=(i+1i)a, a=ea1=eS j>i+1:a(ji1)a=(ji)a=ea1=(ji1)aS综上所述,SG

  6. ( G , ∗ ) (G , *) (G,) 是群,满足: a n = a ∗ a ∗ . . . ∗ a ⏟ n  个  a = e a^n = \underbrace{a * a *...* a}_{n \text{ 个 } a} = e an=n  a aa...a=e 的最小正整数 n n n 称为元素 a a a 的阶(周期),记为 o ( a ) o(a) o(a)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值