数据分析每周挑战——电商用户行为分析

目录

背景描述

数据说明

 一:准备工作

二:数据预处理

三:数据可视化

四:建立RFM模型

五:建立K-Means算法

背景描述

本数据集汇集了某个电商平台的用户基本信息、行为习惯和互动数据。它包括用户的年龄、性别、居住地区、收入水平等基本属性,以及他们的兴趣偏好、登录频率、购买行为和平台互动等动态指标。
数据集关注的焦点在于电商领域,旨在通过用户行为的深入分析,揭示其偏好和需求。通过这些数据,商家能够更好地理解消费者,制定有效的市场策略,满足用户期望,推动业务发展。

数据说明

字段 说明
User_ID 每个用户的唯一标识符,便于追踪和分析。
Age 用户的年龄,提供对人口统计偏好的洞察。
Gender 用户的性别,使能性别特定的推荐和定位。
Location 用户所在地区:郊区、农村、城市,影响偏好和购物习惯。
Income 用户的收入水平,表明购买力和支付能力。
Interests 用户的兴趣,如运动、时尚、技术等,指导内容和产品推荐。
Last_Login_Days_Ago 用户上次登录以来的天数,反映参与频率。
Purchase_Frequency 用户进行购买的频率,表明购物习惯和忠诚度。
Average_Order_Value 用户下单的平均价值,对定价和促销策略至关重要。
Total_Spending 用户消费的总金额,表明终身价值和购买行为。
Product_Category_Preference 用户偏好的特定产品类别。
Time_Spent_on_Site_Minutes 用户在电子商务平台上花费的时间,表明参与程度。
Pages_Viewed 用户在访问期间浏览的页面数量,反映浏览活动和兴趣。
Newsletter_Subscription 用户是否订阅了营销活动通知。

 一:准备工作

导入需要用到的包,设置绘图时的字体,防止绘图时出现乱码。

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score

plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

 如果你在后续运行kmeans算法是出现一些提示,那你可以忽略这些提示。只需要在这里加入两句话。

import warnings

warnings.filterwarnings('ignore')

将这种类型的警告忽视就可以了。

二:数据预处理

data = pd.read_csv("D:/每周挑战/user_personalized_features.csv")
data = data.iloc[:,1:]
data.head()

先导入数据,由于直接导入会将数据集中的序号这一列一并导入,我们又不需要序号这一列,因此我们直接将其删除。

data.info()

查看其信息。

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 14 columns):
 #   Column                       Non-Null Count  Dtype 
---  ------                       --------------  ----- 
 0   User_ID                      1000 non-null   object
 1   Age                          1000 non-null   int64 
 2   Gender                       1000 non-null   object
 3   Location                     1000 non-null   object
 4   Income                       1000 non-null   int64 
 5   I
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值