降维背景
维数灾难背景
现实应用中属性维度成千上万,在高维度情况下会带来很多麻烦,而且当维度大的时候,数据样本一般分布的非常稀疏,这是所有学习算法要面对的问题,降维技术应运而生。
数据降维
降维是对事物的特征进行压缩和筛选,该项任务相对比较抽象。如果没有特定领域知识,无法预先决定采用哪些数据,比如在人脸识别任务中,如果直接使用图像的原始像素信息,数据的维度会非常高,通常会利用降维技术对图像进行处理,保留下最具有区分度的像素组合。
常见降维方法:
SVD - 奇异值分解
奇异值分解是一个能适用于任意矩阵的一种分解方法。 奇异值分解发现矩阵中的冗余并提供用于消除它的格式。 奇异值分解就是利用隐藏的特征建立起矩阵行和列之间的联系。
PCA - 主成分分析
思想:寻找表示数据分布的最优子空间(降维,可以去掉线性相关性)。 数学原理:取协方差矩阵前s个最大特征值对应的特征向量构成映射矩阵,对数据进行降维。
LDA - 线性判别分析
思想:寻找可分性判据最大的子空间。 用到了Fisher的思想,即寻找一个向量,使得降维后类内散度最小,类间散度最大;其实就是取对应的特征向量构成映射矩阵,对数据进行处理。
LLE - 局部线性嵌入
局部线性嵌入(Locally Linear Embedding,简称LLE)也是非常重要的降维方法。和传统的PCA,LDA等关注样本方差的降维方法相比,LLE关注于降维时保持样本局部的线性特征,由于LLE在降维时保持了样本的局部特征,它广泛的用于图像识别,高维数据可视化等领域。
由于PCA和LDA最为常用,所以这里我们只介绍PCA和LDA
PCA(Principal Component Analysis,主成分分析)属于无监督
在高维向量空间中,随着维度的增加,数据呈现出越来越稀疏的分布特点,增加后续算法的复杂度,而很多时候虽然数据维度较高,但是很多维度之间存在相关性,他们表达的信息有重叠。
PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。
这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征(这也是与特征选择特征子集的方法的区别)。
PCA的目的是在高维数据中找到最大方差的方向,接着映射它到比最初维数小或相等的新的子空间。
更多内容了解PCA可查看 https://www.cnblogs.com/hadoop2015/p/7419087.html
PCA的优缺点:
优点:
以方差衡量信息的无监督学习,不受样本标签限制。
各主成分之间正交,可消除原始数据成分间的相互影响。
计算方法简单,主要运算是奇异值分解,易于在计算机上实现。 可减少指标选择的工作量。
缺点:
主成分解释其含义往往具有一定的模糊性,不如原始样本特征的解释性强。
方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。
from sklearn.datasets import load_wine
wine = load_wine()
from sklearn.decomposition import PCA
pca = PCA(n_components=5) # 降成五维
arr = pca.fit_transform(wine.data)
print(arr) # 数据会有丢失,降维相当于对数据进行压缩
LDA (Linear Discriminant Analysis,线性判别式分析) :属于有监督
LDA是一种监督学习的降维技术,将数据在低维度上进行投影,投影后希望每一种类别数据的投影点尽可能的接近,而不同类别的数据的类别中心之间的距离尽可能的大。
from sklearn.datasets import load_wine
wine = load_wine()
import matplotlib.pyplot as plt
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
LDA = LinearDiscriminantAnalysis(n_components=2)
arr = LDA.fit_transform(wine.data,wine.target)
plt.scatter(arr[:,0],arr[:,1])
plt.show()