摘要
本文是把长方体切割的最小代价问题,转化成一个我们所熟悉的图论问题,把其抽象成为一个图论之中求路径的最短路的问题,并采用了图论中的Dijkstra算法,以求其的最短路,最终得到了对长方体切割问题的求解,最后我们通过了一个长方体切割实例,说明了我们的算法是可靠,有效的。
关键字:最短路径 Dijkstra算法 最优截断切割
- 预备知识
1.1图的基本概念
有序三元组G =(V,E,
)称为一个图,其中:(1)V是有穷非空集,称为顶点集,其元素叫做图的顶点;(2)E称为边集,其元素叫做图的边;(3)是从边集E到顶点集 的有序或者无序对集合的映射,称为关联函数。
1.2 权
如果图G中任意一条边上都附有一个数,则称这样的图G为加权图。若边e标记数为k,称边e的权为k。
定义1 在无向图G=(V,E,
)中:
(1)顶点与边相互交错且
(i=1,2,…k)的有限非空序列
称为一条从
到
的通路,记为
(2)边不重复但顶点可重复的通路称为道路,记为
(3)边与顶点均不重复的通路称为路径,记为
右图中,我们可以根据定义得到:
通路
道路
路径
定义2 (1)任意两点均有路径的图称为连通图.
(2)起点与终点重合的路径称为圈.
(3)连通而无圈的图称为树.
定义3 (1)设P(u,v)是赋权图G中从u到v的路径,
则称
为路径P的权.
(2)在赋权图G中,从顶点u到顶点v的具有最小权的路
,称为u到v的最短路.
1.3 固定起点的最短路
最短路是一条路径,且最短路的任一段也是最短路.假设在u0-v0的最短路中只取一条,则从u0到其余顶点的最短路将构成一棵以u0为根的树.因此, 可采用树生长的过程来求指定顶点到其余顶点的最短路.
Dijkstra算法:求G中从顶点u0到其余顶点的最短路,如图1所示:
设G为赋权有向图或无向图,G边上的权均非负.对每个顶点,定义两个标记(,),其中:
:表从顶点u0到v的一条路的权.
:v的父亲点,用以确定最短路的路线
算法的过程就是在每一步改进这两个标记,使最终为从顶点u0到v的最短路的权。.
S:具有永久标号的顶点集
输入: G的带权邻接矩阵
图1
算法步骤:
(1)赋初值:令 S={}, =0,,令=,=,
(2)更新、: ,若>
则令=,=
(3)设是使取最小值的中的顶点,则令S=S∪{},
(4)若φ,转2,否则,停止.
用上述算法求出的就是到的最短路的权,从的父亲标记
追溯到, 就得到到的最短路的路线.
4.最短路径在最优截断切割问题中的应用
从一个长方体中加工出一个已知尺寸、位置预定的长方体(这两个长方体的对应表面是平行的),通常要经过6 次截断切割.设水平切割单位面积的费用是垂直切割单位面积费用的r倍.且当先后两次垂直切割的平面(不管它们之间是否穿插水平切割)不平行时,因调整刀具需额外费用。为了使加工费用最少,下面我们利用最短路径法设计一种安排各面加工次序(称“切割方式”)的方法。
|
设待加工长方体的左右面、前后面、上下面间的距离分别为 a0、b0 、c0 ,六个切割面分别位于左、右、前、后、上、下,将它们相应编号为M1、M2、M3、M4、M5、M6,这六个面与待加工长方体相应外侧面的边距分别为 u1、u2、u3、u4、u5、u6.这样,一种切割方式就是六个切割面的一个排列,共有
种切割方式.当考虑到切割费用时,显然有局部优化准则:两个平行待切割面中,边距较大的待切割面总是先加工.由此准则,只需考虑
种切割方式.即在求最少加工费用时,只需在90个满足准则的切割序列中考虑.不失一般性,设u1≥u2,u3≥u4,u5≥u6,故只考虑M1在M2前、M3在M4前、M5 在M6前的切割方式.
1、 e=0 的情况
为简单起见,先考虑e=0 的情况.构造如图1的一个有向赋权网络图G(V,E).为了表示切割过程的有向性,在网络图上加上坐标轴x,y,z.
|
图1 G(V,E)
图1的含义为:
(1)空间网络图中每个结点Vi(xi,yi,zi)表示被切割石材所处的一个状态.顶点坐标xi、yi、zi分别代表石材在左右、前后、上下方向上已被切割的刀数.例如:V24(2,1,2) 表示石材在左右方向上已被切割两刀,前后方向上已被切一刀,上下方向上已被切两刀,即面M1、M2、M3、M5、M6均已被切割.顶点V1(0,0,0) 表示石材的最初待加工状态,顶点V27(2,2,2)表示石材加工完成后的状态.
(2)G的弧(Vi,Vj)表示石材被切割的一个过程,若长方体能从状态Vi经一次切割变为状态Vj,即当且仅当xi+yi+zi+1=xj+yj+zj时,Vi(xi,yi,zi)到Vj(xj,yj,zj)有弧(Vi,Vj),相应弧上的权W(Vi,Vj)即为这一切割过程的费用.
W(Vi,Vj)=(xj-xi)
(bi
ci)+(yj-yi)
(ai
ci)+(zj-zi)
(ai
bi)
r
其中,ai、bi、ci分别代表在状态Vi时,长方体的左右面、上下面、前后面之间的距离.
例如,状态V5(1,1,0),a5 = a0-u1,b5 = b0-u3,c5 = c0;状态V6(2,1,0)
W(V5,V6) =(b0-u3)
c0
(3)根据准则知第一刀有三种选择, 即第一刀应切M1、M3、M5中的某个面,在图中分别对应的弧为( V1,V2),(V1,V4),(V1,V10). 图G中从V1到V27的任意一条有向道路代表一种切割方式.从V1到V27共有90条有向道路,对应着所考虑的90种切割方式.V1到V27的最短路即为最少加工费用,该有向道路即对应所求的最优切割方式.
实例:待加工长方体和成品长方体的长、宽、高分别为10、145、19 和3、2、4,两者左侧面、正面、底面之间的距离分别为6、7、9,则边距如下表:
u1 | u2 | u3 | u4 | u5 | u6 |
6 | 1 | 7 | 55 | 6 | 9 |
r=1时,求得最短路为V1-V10-V13-V22-V23-V26-V27,其权为374
对应的最优切割排列为M5-M3-M6-M1-M4-M2,费用为374元.
2、 e
0的情况
当e
0时,即当先后两次垂直切割的平面不平行时,需加调刀费e.希望在图1的网络图中某些边增加权来实现此费用增加.在所有切割序列中,四个垂直面的切割顺序只有三种可能情况:
<情况一>先切一对平行面,再切另外一对平行面,总费用比e=0时的费用增加e.
<情况二>先切一个,再切一对平行面,最后割剩余的一个,总费用比e=0时的费用增加2e.
<情况三>切割面是两两相互垂直,总费用比e=0时的费用增加3e.
在所考虑的90种切割序列中,上述三种情况下垂直切割面的排列情形,及在图G中对应有向路的必经点如下表:
垂直切割面排列情形 | 有向路必经点 | |
情况一 (一) | M1-M2-M3-M4 | (1,0,z),(2,0,z),(2,1,z) |
情况一 (二) | M3-M4-M1-M2 | (0,1,z),(0,2,z),(1,2,z) |
情况二 (一) | M3-M1-M2-M4 | (0,1,z),(1,1,z),(2,1,z) |
情况二 (二) | M1-M3-M4-M2 | (1,0,z),(1,1,z),(1,2,z) |
情况三 (一) | M1-M3-M2-M4 | (1,0,z),(1,1,z),(2,1,z) |
情况三 (二) | M3-M1-M4-M2 | (0,1,z),(1,1,z),(1,2,z) |
|
z=0,1,2
我们希望通过在图1的网络图中的某些边上增加权来进行调刀费用增加的计算,但由于网络图中的某些边是多种切割序列所公用的.对于某一种切割序列,需要在此边上增加权e,但对于另外一种切割序列, 就有可能不需要在此边上增加权e,这样我们就不能直接利用图1的网络图进行边加权这种方法来求出最短路径.
由上表可以看出,三种情况的情形(一)有公共点集{(2,1,z)|z=0,1,2},情形(二)有公共点集{(1,2,z)|z=0,1,2}.且情形(一)的有向路决不通过情形(二)的公共点集,情形(二)的有向路也不通过情形(一)的公共点集.所以可判断出这两部分是独立的、互补的.如果我们在图G中分别去掉点集{(1,2,z)|z=0,1,2}和{(2,1,z)|z=0,1,2}及与之相关联的入弧,就形成两个新的网络图,如图2和3.这两个网络图具有互补性.对于一个问题来说,最短路线必存在于它们中的某一个中.
由于调整垂直刀具为3次时,总费用需增加3e, 故我们先安排这种情况的权增加值e,每次转刀时,给其待切弧上的权增加e.增加e的情况如图2中所示.再来判断是否满足调整垂直刀具为二次、一次时的情况,我们发现所增加的权满足另外两类切割序列.
综合上述分析,我们将原网络图G分解为两个网络图2和3,并在指定边上的权增加e,然后分别求出图1和2中从V1到V27的最短路,最短路的权分别为:d1,d2.则得出整体的最少费用为:d = min(d1,d2) ,最优切割序列即为其对应的最短路径.
实例:r=15,e=2时,求得图G1与G2的最短路为2的路V1-V4-V5-V14-V17-V26-V27,权为4435,对应的最优切割序列为M3-M1-M6-M4-M5-M2,最优费用为4435.
|
图2
|
图3
5.结论
图论是数学的一个分支,它以图为研究对象。图论中的图是由若干给定的点及连接两点的线所构成的图形,这种图形通常用来描述某些事物之间的某种特定关系,用点代表事物,用连接两点的线表示相应两个事物间具有这种关系。
本文讨论了最优切割问题中使用最短路径分析及Dijkstra算法设计。另外,最短路径问题在城市道路建设、物资供应站选址等问题上也有相当重要的作用。
图论题目的求解多以证明题为主,我们在求解过程中往往是应用已知的定理,分析题目的真正内涵加以解决。但是我们在做题过程中,往往会碰到这样那样的阻力和障碍,这时,我们可以利用已知的定理,事先做好判断。
参考文献:
[1] 任善强,雷鸣.数学模型[M].重庆:重庆大学出版社,2006.
[2] 夏春林.道路网络中最短路径的算法与实现[J].辽宁工程技术大学学报,2003.
[3] 兰家隆,刘军.应用图论及算示[M].北京:电子科技大学出版社,1995.