共享单车问题

摘要:共享单车由于其符合低碳出行理念,所以引起了越来越多人的注意,现在已经成为了一种新型共享经济。居民居住地和交通站点通常都有一段距离,这段不远的距离以及现实存在的公共交通拥挤现象则使居民乘坐公共交通的意愿降低,而将共享单车服务系统纳入城市公共交通体系,能够从一定程度上缓解这一现象。

为了解决题目中给出的四个问题,我们先将题中所给的骑行数据按每五十分钟的时间段进行分段,并在该时间段内按其从某区域出发和到达个数进行筛选,进行简单的加和之后便得到在该时间段内该地点存在的共享单车数(由于研究的是某一时间段,而并非时间点,所以该地点某一时刻的共享单车数存在误差)。其次,利用附件二所给的需求量和问题一所得到的某时间段共享单车数进行比较,并带入运输距离、运输费用、运输时间、顾客满意度四个变量,来对共享单车进行最优调度。然后,假设指标 W(满意度),用总的骑行次数与需求次数作比,将由问题一所得的总骑行次数与附件二需求骑行次数作比作为顾客满意度的重要指标,由需求次数与总骑行次数的差值来对 100 辆补加共享单车进行分配,已达到资源的最为合理的配置。最后,根据附件三所给数据做出关系曲线,对曲线进行直观的分析,并以两个城市为例,来说明共享单车的普及对计程车的影响。

关键词:共享单车 骑行次数 最优配置 顾客满意度

1.问题重述

共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是一种分时租赁模式。共享单车是一种新型共享经济。共享单车已经越来越多地引起人们的注意,由于其符合低碳出行理念,政府对这一新鲜事物也处于善意的观察期。

很多共享单车公司的单车都有 GPS 定位,能够实现动态化地监测车辆数据、骑行分布数据,进而对单车做出全天候供需预测,为车辆投放、调度和运维提供指引。

请根据下面附件给出数据及结合根据需要自己收集的数据,完成以下问题:

(1)根据附件 1 中共享单车的骑行数据,估计共享单车的时空分布情况。

如从某地点 A 出发,到达不同地点的分布情况。可分时间段讨论。

(2)假如根据调查,得到人们的骑行需求估计数据,见附件 2。

根据问题 1 的估计结果,建立数学模型解决如何优化共享单车的调度问题。(3)根据附件 1 的骑行数据和附件 2 的需求数据,判断各区域所需共享单

车的满足程度,给出你的度量指标。若增加 100 辆单车,如何进行投放更优。

(4)附件 3 是某地区投入不同数量共享单车后打车人次的数据。据此分析研究共享单车的投入对该地区打车市场的影响。同时请你收集实际数据进行量化研究。

2.问题假设

(1)假设所给数据均为具体所给的数据;

3

(2)假设顾客满意度几乎仅受是否存在共享单车供骑行,而受其他因素影响较小;

(3)假设搜集所得的数据均为真实可靠的数据;

(4)假设所取的时间段均可看做是时间点,忽略步长的影响。

3.符号设定

W:满意度

Lij:任意两个区域之间的距离

Lmin:将经过所有区域的最短路径设为 

4、问题分析

对问题一:

对题目所给的附件一用 Excel 进行数据处理,将时间分为 22 个时间段,每

个时间段 50 分钟,按地域对数据进行筛选,并在该时间段内按其从某区域出发

和到达个数进行筛选,筛选后对数据进行处理,得到某个时间段内共享单车的

数量(由于研究的是某一时间段,而并非时间点,所以该地点某一时刻的共享

单车数存在误差),进行时空分析。利用 Excel 对数据进行处理,做出折线图以

及面积图对共享单车的时空分析进行,得出直观地共享单车的时空分布图。

对问题二:

利用附件二所给的需求量和问题一所得到的某时间段共享单车数进行比

较,并带入运输距离变量,来对共享单车进行最优调度。通过对附件二到达某

地点的共享单车数量进行求和,得出一天内共享单车的需求量,进而与问题一

4

所求得的某时刻共享单车的数量进行比较,并且考虑进运输距离变量。当共享单车实际数量小于需求量时,根据上述四个变量来实现对共享单车的最优调度。

对问题三:

假设指标 W(满意度),用总的骑行次数与需求次数作比,将由问题一所得的总骑行次数与附件二需求骑行次数作比作为顾客满意度的度量指标。根据附件一的总的使用次数除以共享单车数量即为 每辆共享单车的平均使用次数(忽略共享单车的时空位移,仅关注共享单车的使用率即共享单车的骑行次数)。用共享单车需求次数减去共享单车每个区域总的骑行次数,根据差值和每个单车的平均使用次数,即可得到每个区域共享单车的投放数量。对问题四:

根据附件三所给共享单车数量与打车人数的具体数据做出两者的关系曲线,对曲线进行直观的分析,从曲线中可得出随着共享单车的投入,打车人数下降。并以两个城市为例,来具体说明共享单车的普及对计程车的影响。

5.问题一的求解

为了求出共享单车的时空分布情况,我们先将原始数据进行了表格化的处

理(见附录 1),然后用 Excel 软件进行数据处理。从共享单车的使用时间我们

可以看出这是一天的使用情况,从凌晨到早上六点(即 0-360 分钟基本无车辆

的使用情况)。所以我们从 360 分钟开始划分,每 50 分钟划分为一个时间段,

共位划分了 22 个时间段。然后按地域对数据进行筛选,并在该时间段内按其从

某区域出发和到达个数进行筛选,筛选后对数据进行处理,得到某个时间段内

5

共享单车的数量(由于研究的是某一时间段,而并非时间点,所以该地点某一

时刻的共享单车数存在误差),进行时空分析。

我们根据 1000 辆自行车的出发区域计算出在初始时刻各个中共享单车数量。

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

车辆

100

109

90

99

106

102

90

120

91

93

表 1:初始时刻各个区域内的单车个数

然后我们又根据在各个时段内各个区域内的骑入和骑出量(开始时刻表示

骑出,结束时刻表示骑出)计算出各个时间段内各个区域内的单车数量,如下

表:

时间段/区

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

3

4

5

6

7

8

9

10

2

360-410

77

91

85

87

103

97

90

103

75

97

410-460

56

76

98

79

88

94

83

91

93

91

460-510

32

92

97

89

96

77

89

79

98

95

510-560

30

87

112

83

93

85

93

70

88

105

560-610

31

62

139

89

88

79

100

67

86

103

610-660

34

35

155

97

106

82

97

68

82

101

660-710

27

21

149

99

91

87

120

69

91

100

710-760

24

22

161

82

86

93

126

71

99

107

760-810

24

14

150

85

75

106

137

40

121

113

810-860

10

-3

147

92

69

105

145

39

119

123

860-910

11

-6

147

89

47

95

130

27

126

113

910-960

7

-5

144

75

28

95

107

19

132

128

960-1010

5

-22

143

61

18

109

106

17

130

123

1010-1060

0

-29

161

64

10

89

115

19

137

117

1060-1110

-12

-48

164

59

-4

102

130

17

142

127

1110-1160

-11

-51

164

51

-17

99

138

9

138

141

1160-1210

-12

-50

180

47

-20

100

143

14

139

149

1210-1260

24

-7

209

86

34

147

187

37

179

169

1260-1310

16

-13

213

93

39

156

192

31

184

159

1310-1360

18

4

207

92

38

154

195

27

182

163

1360-1410

26

-4

207

94

35

158

203

23

182

167

1410-1460

31

-3

209

97

40

159

205

24

185

168

6

表 2:每个时段各个区域内的车辆数

由上表我们观察得到,某些区域内的某些时间段的车辆数产生了负数,这显然是不符合常理的,对此我们进行了的误差分析。由于我们是用初始车辆+骑入车辆-骑出车辆来计算各时段的车辆数的,我们用开始时刻就表示骑出,到达时刻表示骑入,而单车在骑行过程中的情况我们没有考虑在内,所以在车辆数目上产生了一些误差。但是这些并不影响我们得出的这些数据反映出其时空分布情况。

我们接着利用上表绘制了车辆的时空分布图,如下图:

图 1:各个时间段内各个区域的车辆数的面积图

7

图 2:各个时间段内各个区域的车辆数的折线图

我们根据上图可以看出在 1000 到 1200 的时间段内区域区域 1、区域 2、区

域 5 和区域 8 的单车数量明显减少,这也在一定程度上反映出这些区域在

1000-1200 的这段时间内单车数量小于其需求量。

6.问题二的求解

利用附件二所给的需求量和问题一所得到的某时间段共享单车数进行比

较,并带入距离这一变量,任意两个区域之间的距离我们可以用两个区域之间

单车行驶的时间的进行估算,从而实现共享单车进行最优调度转化为求两点间

最短路径问题进行解决,通过对附件二到达某地点的共享单车数量进行求和,

得出一天内共享单车的需求量,进而与问题一所求得的某时刻共享单车的数量

进行比较,并且考虑进距离变量。当共享单车实际数量小于需求量时,则根据

距离来实现对共享单车的最优调度。

我们将任意两个区域间的距离设为Lij,将经过所有区域的最短路径设为

8

Lmin,

kn

æd

ö

ç

÷

L min = å å å

ij

+ | lj

k

ç

xij

v

k =1   i =1 j =1,j ¹i è

ø

本题中我们通过算法求出最短路径(见附录),我们求出最短路径后,当共享单

车的实际数量小于需求量时,我们便根据最短路径对各个区域的单车进行分

配。

7.问题三的求解

假设指标 W(满意度),用总的骑行次数与需求次数作比,将由问题一所得的总骑行次数与附件二需求骑行次数作比作为顾客满意度的度量指标。根据附件一的总的使用次数除以共享单车数量即为 每辆共享单车的平均使用次数(忽略共享单车的时空位移,仅关注共享单车的使用率即共享单车的骑行次数)。用共享单车需求次数减去共享单车每个区域总的骑行次数,根据差值和每个单车的平均使用次数,即可得到每个区域共享单车的投放数量。

每日单车的平均使用次数 N=11651/1000=12 次

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

每日运行车

1156

1322

1072

1228

1315

1192

1085

1373

1070

1088

表 3:每日各区域的运行车次

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

需求车次

1168

1286

1289

1313

1301

1319

1297

1383

1252

1235

9

表 4:每日各区域的需求车次

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

W

0.99

1.028

0.832

0.935

1.011

0.904

0.837

0.993

0.855

0.881

表 5:各个区域的满意度指标

如果再投入 100 辆共享单车,按照平均每日每辆车使用 12 次计算,即可增加 1200 车次,我们经过对各个区域的满意度指标进行排序得出区域 3、区域7、区域 9 和区域 10 的满意度指标最低,所这 100 辆共享单车应优先向这四个

区域进行投放。

8.问题四的求解

我们根据附件三所给共享单车数量与打车人数的具体数据做出两者的关系

曲线,如下图所示

图 3:单车投放量与打车人次的关系图

10

由上图我们可以直观的看出随着共享单车的投入,打车人数下降。

我们在网上查询出郑州和徐州两个城市的单车投放量与打车人次的数据如

下表。

单车

投放

18300

27450

36600

45750

54900

64050

73200

82350

91500

打车

299200

280896

262944

230912

213840

197120

176299

173800

172304

人次

表 6:郑州单车投放量与打车人次的数量关系

单车

投放

9700

14550

19400

24250

29100

33950

38800

43650

48500

打车

175100

164388

153882

135136

125145

115360

103175

101713

100837

人次

表 7:徐州单车投放量与打车次数的数量的关系

打车人次

350000

300000

250000

200000

150000

100000

50000

0

18300 27450 36600 45750 54900 64050 73200 82350 91500

图 4:郑州单车投放量与打车人次的关系图

11

打车人次

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

0

9700 14550 19400 24250 29100 33950 38800 43650 48500

图 5:徐州单车投放量与打车人次的关系图

由郑州和徐州这两个城市的实际数据再结合关系图我们可以明显看出随着共享单车的投入,打车人数下降,当单车投入到一定量时,打车人次减少的趋势会放缓。

9.模型分析

1)模型优点

对数据的合理利用,在第一问中我们为了分析出单车时空分布情况,我们先

将题中所给的骑行数据按每五十分钟的时间段进行分段,并在该时间段内按其从

某区域出发和到达个数进行筛选,进行简单的加和之后便得到在该时间段内该地

点存在的共享单车数。在第二问中我们从骑行时间分析出了任意两个区域之间的

距离Lij,再通过经过十个区域之间的最短路径也进行最优调度;问题三种我们引

入了满意度指标 W,而且估算出单车日平均使用量,从而对新增的 100 辆单车进

行最优分派;问题四中我们则引入了郑州和徐州这两个城市的实际数据,

12

2)模型不足

考虑因素不够全面,第一问中没有考虑骑行时间,所以造成了一些误差;第

二问中也只考虑距离的因素,实际情况要更加复杂。

10.参考文献

  1. 薛定宇,陈阳泉,高等应用数学问题的 MATLAB 求解,[M],北京:清华大学出版社,2008。

  1. 谭永基等,数学模型,[M],上海:复旦大学出版社。

  1. 中国数学建模网:www.shumo.com

11.附录

使用到的软件有 Matlab、excel、code:blocks.

附录 1:转化为表格形式骑行数据

8

1

8

NaN

8

468.28

471.67

10

8

569.13

580.61

2

8

655.88

669.49

6

8

724.07

728.71

8

8

778.06

782.69

6

8

877.31

891.67

10

1

2

1

NaN

1

463.23

473.56

8

1

482

486.27

4

1

572.77

576.71

8

1

610.74

615.33

4

1

620.65

631.31

10

1

658.01

665.38

3

1

736.58

744.81

5

1

773.68

787.33

2

1

803.59

813.95

7

13

4

3

4

NaN

4

370.3

376.91

6

4

461.1

465.06

8

4

499.86

510.56

1

4

550.25

561.46

9

4

607.46

620.23

1

4

699.69

712.34

9

4

727.32

732.4

6

4

826.12

837.6

2

4

922.65

932.95

1

4

951.25

958.99

5

4

1004.54

1008.9

4

4

1067.72

1081.87

3

4

1161.33

1175.9

7

4

1244.92

1248.95

8

4

1289.57

1298.74

2

6

4

6

NaN

6

409.15

413.73

8

6

451.65

455.46

3

6

538.92

545.83

10

6

635.21

643.06

1

6

720.73

731.21

8

6

797.47

809.47

9

6

842.22

847.44

6

6

909.52

914.27

9

6

995.54

1000.22

10

10

5

10

NaN

10

464.1

476.6

6

10

481.7

494.59

2

10

534.99

540.02

3

…………….

……………

1350.22

1336.61

1350.22

10

10

999

10

NaN

423.51

410.93

423.51

6

486.59

480.51

486.59

4

546.97

536.15

546.97

10

560.94

557.59

560.94

8

660.1

650.82

660.1

2

752.34

740.49

752.34

10

829.12

815.07

829.12

5

867.62

854.63

867.62

7

14

896.26

885.88

896.26

2

930.2

921.1

930.2

8

1013.22

1009.07

1013.22

7

1113.06

1098.63

1113.06

3

1188.12

1183.98

1188.12

8

1254.46

1250.04

1254.46

3

1345.06

1330.27

1345.06

7

1390.66

1384.3

1390.66

6

4

1000

4

NaN

477.45

473.36

477.45

5

564.34

548.33

564.34

9

630.41

623.49

630.41

4

695.05

688.42

695.05

6

777.01

768.08

777.01

1

NaN

NaN

NaN

NaN

附录 2:各个时段每个区域骑出共享单车数量

时间段/区

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

360-410

52

50

45

51

41

50

39

63

51

43

410-460

69

80

63

75

75

76

71

96

59

70

460-510

101

80

72

78

84

82

84

103

81

78

510-560

75

86

69

79

88

79

69

94

86

71

560-610

83

90

66

81

91

81

79

102

74

80

610-660

75

88

75

89

79

78

71

92

79

68

660-710

65

89

85

80

95

87

64

85

66

81

710-760

78

79

58

81

71

80

69

79

72

69

760-810

76

74

69

63

74

62

64

87

51

60

810-860

63

79

65

72

80

73

58

72

59

60

860-910

58

76

61

69

71

70

64

77

58

70

910-960

62

58

56

66

75

61

79

75

55

55

960-1010

49

64

53

70

60

49

52

48

45

53

1010-1060

46

55

30

40

61

58

39

63

43

38

1060-1110

51

76

38

47

61

38

31

38

40

48

1110-1160

37

46

34

48

46

46

40

54

41

40

1160-1210

33

45

28

27

43

29

32

35

30

29

1210-1260

27

34

38

42

41

29

27

37

23

27

1260-1310

27

29

20

25

24

24

20

28

25

23

1310-1360

17

25

30

28

25

25

23

22

20

15

1360-1410

12

19

17

17

30

15

10

23

12

10

1410-1460

0

0

0

0

0

0

0

0

0

0

15

附录 3:各个时段每个区域骑入共享单车数量

时间段/区

1

2

3

4

5

6

7

8

9

10

360-410

29

32

40

39

38

45

39

46

35

47

410-460

48

65

76

67

60

73

64

84

77

64

460-510

77

96

71

88

92

65

90

91

86

82

510-560

73

81

84

73

85

87

73

85

76

81

560-610

84

65

93

87

86

75

86

99

72

78

610-660

78

61

91

97

97

81

68

93

75

66

660-710

58

75

79

82

80

92

87

86

75

80

710-760

75

80

70

64

66

86

75

81

80

76

760-810

76

66

58

66

63

75

75

56

73

66

810-860

49

62

62

79

74

72

66

71

57

70

860-910

59

73

61

66

49

60

49

65

65

60

910-960

58

59

53

52

56

61

56

67

61

70

960-1010

47

47

52

56

50

63

51

46

43

48

1010-1060

41

48

48

43

53

38

48

65

50

32

1060-1110

39

57

41

42

47

51

46

36

45

58

1110-1160

38

43

34

40

33

43

48

46

37

54

1160-1210

32

46

44

23

40

30

37

40

31

37

1210-1260

63

77

67

81

95

76

71

60

63

47

1260-1310

19

23

24

32

29

33

25

22

30

13

1310-1360

19

42

24

27

24

23

26

18

18

19

1360-1410

20

11

17

19

27

19

18

19

12

14

1410-1460

5

1

2

3

5

1

2

1

3

1

附录 4:各个时间段内各个区域内的单车数量

时间段/区

区域

区域

区域

区域

区域

区域

区域

区域

区域

区域

1

2

3

4

5

6

7

8

9

10

360-410

77

91

85

87

103

97

90

103

75

97

410-460

56

76

98

79

88

94

83

91

93

91

460-510

32

92

97

89

96

77

89

79

98

95

510-560

30

87

112

83

93

85

93

70

88

105

560-610

31

62

139

89

88

79

100

67

86

103

610-660

34

35

155

97

106

82

97

68

82

101

660-710

27

21

149

99

91

87

120

69

91

100

710-760

24

22

161

82

86

93

126

71

99

107

760-810

24

14

150

85

75

106

137

40

121

113

810-860

10

-3

147

92

69

105

145

39

119

123

860-910

11

-6

147

89

47

95

130

27

126

113

910-960

7

-5

144

75

28

95

107

19

132

128

16

960-1010

5

-22

143

61

18

109

106

17

130

123

1010-1060

0

-29

161

64

10

89

115

19

137

117

1060-1110

-12

-48

164

59

-4

102

130

17

142

127

1110-1160

-11

-51

164

51

-17

99

138

9

138

141

1160-1210

-12

-50

180

47

-20

100

143

14

139

149

1210-1260

24

-7

209

86

34

147

187

37

179

169

1260-1310

16

-13

213

93

39

156

192

31

184

159

1310-1360

18

4

207

92

38

154

195

27

182

163

1360-1410

26

-4

207

94

35

158

203

23

182

167

1410-1460

31

-3

209

97

40

159

205

24

185

168

附录 5:求最短路径

  1. MATLAB算法代码

       
function [mydistance,mypath]=mydijkstra(a,sb,db);
 %寻找i,j两点最短路径
 % 输入:a—邻接矩阵,a(i,j)是指i到j之间的距离,可以是有向的
 % sb—起点的标号, db—终点的标号
 % 输出:mydistance—最短路的距离, mypath—最短路的路径

n=size(a,1); visited(1:n) = 0;

distance(1:n) = inf; distance(sb) = 0; %起点到各顶点距离的初始化

visited(sb)=1; u=sb;  %u为最新的P标号顶点

parent(1:n) = 0; %前驱顶点的初始化for i = 1: n-1

     id=find(visited==0); %查找未标号的顶点

     for v = id           

         if  a(u, v) + distance(u) < distance(v)

             distance(v) = distance(u) + a(u, v);  %修改标号值

             parent(v) = u;                                    

         end            

     end

     temp=distance;

     temp(visited==1)=inf;  %已标号点的距离换成无穷

     [t, u] = min(temp);  %找标号值最小的顶点

     visited(u) = 1;       %标记已经标号的顶点

 end

mypath = [];if parent(db) ~= 0   %如果存在路!

    t = db; mypath = [db];

    while t ~= sb

        p = parent(t);

        mypath = [p mypath];

        t = p;      

    endend

mydistance = distance(db);

2.C++代码

#include<iostream>

#include<vector>

using namespace std;

void dijkstra(const int &beg,//出发点

const vector<vector<int> > &adjmap,//邻

接矩阵,通过传引用避免拷贝

vector<int> &dist,//出发点到各点的最短路

径长度

vector<int> &path)//路径上到达该点的前一

个点

//负边被认作不联通

//福利:这个函数没有用任何全局量,可以直接复制!

{

const int &NODE=adjmap.size();//用邻接矩阵的大小传递顶点个数,减少参数传递

dist.assign(NODE,-1);//初始化距离为未知

path.assign(NODE,-1);//初始化路径为未知

vector<bool> flag(NODE,0);//标志数组,判断是否处理过

dist[beg]=0;//出发点到自身路径长度为 0

while(1)

{

int v=-1;//初始化为未知

for(int i=0; i!=NODE; ++i)

if(!flag[i]&&dist[i]>=0)//寻找未被处理过且if(v<0||dist[i]<dist[v])//距离最小的

v=i;

if(v<0)return;//所有联通的点都被处理过

flag[v]=1;//标记

for(int i=0; i!=NODE; ++i) if(adjmap[v][i]>=0)//有联通路径且

17

if(dist[i]<0||dist[v]+adjmap[v][i]<di

st[i])//不满足三角不等式

{

dist[i]=dist[v]+adjmap[v][i];

//更新

path[i]=v;//记录路径

}

}

}

int main()

{

int n_num,e_num,beg;//含义见下

cout<<"输入点数、边数、出发点:";

cin>>n_num>>e_num>>beg;

vector<vector<int> > adjmap(n_num,vector<int>(n_num,-1));// 默认初始化邻接矩阵

for(int i=0,p,q; i!=e_num; ++i)

{

cout<<"输入第"<<i+1<<"条边的起点、终点、长度(负值代

表不联通):";

cin>>p>>q;

cin>>adjmap[p][q];

}

vector<int> dist,path;//用于接收最短路径长度及路径各点 dijkstra(beg,adjmap,dist,path); for(int i=0; i!=n_num; ++i)

{

cout<<beg<<"到"<<i<<"的最短距离为"<<dist[i]<<",反向

打印路径:";

for(int w=i; path[w]>=0; w=path[w])

cout<<w<<"<-";

cout<<beg<<'\n';

}

}

18

在介绍这些问题时,我会分别概述每个领域的概念可能出现的结果: 1. **机器学习共享单车问题**:假设这是一个预测用户是否会继续使用某共享单车问题。运行结果可能包括准确率、召回率、AUC值等指标,比如代码片段可能会显示某个模型如随机森林或神经网络在测试集上达到了85%的精度。 ```python # 示例代码 accuracy = model.evaluate(test_data, test_labels)['accuracy'] print(f"单车使用预测准确率为: {accuracy*100:.2f}%") ``` 2. **语音识别问题**:这通常涉及将音频转化为文本。运行结果会展示转录的准确度,如WER(Word Error Rate)分数较低表示性能好。可能的代码片段会打印出如“语音识别错误率:10%”。 ```python wer = evaluate_speech_recognition(transcriptions, ground_truth) print(f"语音识别WER: {wer}") ``` 3. **墨渍数据分类**:这是一个图像处理任务,目标可能是区分手写的数字或识别污渍类别。结果可以看作混淆矩阵或各类别的精确率、召回率。示例代码: ```python confusion_matrix = classification_report(y_true, y_pred, target_names=classes) print("Confusion Matrix:\n", confusion_matrix) ``` 4. **维吉尼亚鸢尾识别问题**:鸢尾花分类是一个经典的数据科学案例,运行结果通常是训练集测试集的准确率或F1分数。例如: ```python iris_model.score(X_test, y_test) print(f"Iris Species Classification F1 Score: {f1_score(y_test, predicted_iris, average='weighted')}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

等天晴i

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值