Logistic分类

研究对象

数据集: 乳腺癌数据集 breast cancer 的原型是一组病灶造影图片,数据集提供者从每张图片中提取了30个特征,一共569个样本,其中阳性样本357,阴性样本212。
数据集特征名称、目标类别、数据集大小如下
image.png
数据如下:
image.png

逻辑分类概念

原理

逻辑回归(Logistic Regression)是一种用于二分类问题的分类算法。它的原理基于线性回归和逻辑函数(也称为Sigmoid函数)的组合。逻辑回归的目标是根据输入特征的线性组合来预测样本属于某个类别的概率。

假设存在一组输入特征 x = (x₁, x₂, …, xₙ),并且每个特征都与一个权重参数 w = (w₁, w₂, …, wₙ) 相关联。
将输入特征与权重参数的线性组合表示为 z = w₁x₁ + w₂x₂ + … + wₙxₙ + b,其中 b 是偏置项。
将线性组合 z 输入到逻辑函数(Sigmoid函数)中,用于将线性输出转换为概率值。Sigmoid函数的公式为:σ(z) = 1 / (1 + exp(-z))。
得到的概率值表示样本属于正类的概率,而 1 减去该概率则表示样本属于负类的概率。
训练逻辑回归模型的目标是最大化似然函数(或最小化对数损失函数),通过调整权重参数 w 和偏置项 b 来实现。常用的方法是使用梯度下降算法或其变种来优化损失函数。

  • 使用梯度下降法来训练w的值

### 如何用 Python 和 Spark 实现 Logistic 分类模型 在大数据处理场景中,Apache Spark 是一种高效的分布式计算框架,而其机器学习库 MLlib 提供了丰富的算法支持,其中包括 Logistic 回归。以下是基于 PySpark 的 Logistic 回归分类模型实现的具体方法。 #### 数据准备阶段 为了训练和测试 Logistic 回归模型,通常需要先准备好数据集并将其划分为训练集和测试集。可以使用 `pyspark.sql` 中的数据框操作来加载和预处理数据: ```python from pyspark.sql import SparkSession from pyspark.ml.feature import VectorAssembler from pyspark.ml.linalg import Vectors # 初始化 SparkSession spark = SparkSession.builder.appName("LogisticRegression").getOrCreate() # 加载示例数据 (假设 CSV 文件有特征列 f1,f2,...fn 和标签列 label) data = spark.read.format("csv") \ .option("header", "true") \ .load("path/to/your/data.csv") # 将特征向量化 assembler = VectorAssembler(inputCols=["f1", "f2", ..., "fn"], outputCol="features") output = assembler.transform(data).selectExpr("features", "label as label") # 划分训练集和测试集 train_data, test_data = output.randomSplit([0.8, 0.2], seed=42) ``` 此部分代码实现了数据的读取、特征组装以及划分成训练集和测试集的功能[^1]。 #### 构建 Logistic 回归模型 利用 PySpark 的 `LogisticRegression` 类创建模型实例,并调用 `.fit()` 方法完成模型拟合过程: ```python from pyspark.ml.classification import LogisticRegression # 定义 Logistic 回归模型 lr = LogisticRegression(featuresCol='features', labelCol='label') # 使用训练数据拟合模型 model = lr.fit(train_data) # 输出模型参数摘要 print(model.summary.areaUnderROC) # 打印 ROC 曲线下面积 ``` 这段代码展示了如何定义一个简单的二元分类器并通过训练数据对其进行优化[^4]。 #### 模型评估与预测 最后一步是对新样本进行预测并对模型表现做出评价。这里采用多类别分类评估器来进行性能度量: ```python from pyspark.ml.evaluation import BinaryClassificationEvaluator # 对测试集执行预测 predictions = model.transform(test_data) # 设置评估标准 evaluator = BinaryClassificationEvaluator(rawPredictionCol="rawPrediction", labelCol="label", metricName="areaUnderROC") # 获取 AUC 值 auc = evaluator.evaluate(predictions) print(f"AUC Score on Test Data: {auc}") ``` 上述脚本完成了对测试集合上的预测工作,并通过计算曲线下面积(Area Under Curve) 来衡量模型质量[^3]。 ### 注意事项 当面对大规模数据集时,需注意调整超参数如正则化强度(regParam),最大迭代次数(maxIter)等以获得更好的泛化能力;另外还需考虑硬件资源配置情况合理分配内存给各个节点以便顺利完成整个流程[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值