形成思路:
目标是网络更深更大、数据更多。做到这些可以选择以下方式:1、更多的全连接层(但太贵)2、更多的卷积层 3、将卷积层组合成块
VGG块:可看作更大更深的AlexNet
VGG架构:替换掉AlexNet整个卷积的架构,形成n个VGG块串在一起
比较:
总结:
VGG使用可重复使用的卷积块来构建深度卷积神经网络;不同的卷积块个数和超参数可以得到不同复杂度的变种。
代码实现:
import torch
from torch import nn
from d2l import torch as d2l
#定义VGG块 超参数num_convs:需要多少个卷积层
def vgg_block(num_convs,in_channels,out_channels):
layers=[]
for _ in range(num_convs):
#layers.append():将对象保存在layers列表中
layers.append(nn.Conv2d(
in_channels,out_channels,kernel_size=3,padding=1))
layers.append(nn.ReLU())
in_channels=out_channels#替换一下
layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
return nn.Sequential(*layers)#构造成VGG的块
#VGG网络
conv_arch=((1,64),(1,128),(2,256),(2,512),(2,512))
def vgg(conv_arch):
conv_blks=[]
in_channels=1
for(num_convs,out_channels) in conv_arch:
conv_blks.append(vgg_block(
num_convs,in_channels,out_channels
))
in_channels=out_channels
return nn.Sequential(
*conv_blks,nn.Flatten(),
nn.Linear(out_channels*7*7,4096),nn.ReLU(),
nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),
nn.Dropout(0.5),nn.Linear(4096,10)
)
net=vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
X = blk(X)
print(blk.__class__.__name__,'output shape:\t',X.shape)
#把网络分成五块,每一块把高宽减半,通道数翻倍
#由于VGG-11⽐AlexNet计算量更⼤,因此我们构建了⼀个通道数较少的⽹络,⾜够⽤于训练Fashion-MNIST数据集。
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
#除了使⽤略⾼的学习率外,模型训练过程与 7.1节中的AlexNet类似。
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())
一部分结果:
每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。