李沐动手学深度学习笔记---使用块的网络(VGG)

 形成思路:

目标是网络更深更大、数据更多。做到这些可以选择以下方式:1、更多的全连接层(但太贵)2、更多的卷积层 3、将卷积层组合成块

VGG块:可看作更大更深的AlexNet

 VGG架构:替换掉AlexNet整个卷积的架构,形成n个VGG块串在一起

 比较:

 总结:

VGG使用可重复使用的卷积块来构建深度卷积神经网络;不同的卷积块个数和超参数可以得到不同复杂度的变种。

代码实现:

import torch
from torch import nn
from d2l import torch as d2l
#定义VGG块   超参数num_convs:需要多少个卷积层
def vgg_block(num_convs,in_channels,out_channels):
    layers=[]
    for _ in range(num_convs):
        #layers.append():将对象保存在layers列表中
        layers.append(nn.Conv2d(
            in_channels,out_channels,kernel_size=3,padding=1))
        layers.append(nn.ReLU())
        in_channels=out_channels#替换一下
    layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)#构造成VGG的块

#VGG网络
conv_arch=((1,64),(1,128),(2,256),(2,512),(2,512))
def vgg(conv_arch):
    conv_blks=[]
    in_channels=1
    for(num_convs,out_channels) in conv_arch:
        conv_blks.append(vgg_block(
            num_convs,in_channels,out_channels
        ))
        in_channels=out_channels

    return nn.Sequential(
        *conv_blks,nn.Flatten(),
        nn.Linear(out_channels*7*7,4096),nn.ReLU(),
        nn.Dropout(0.5),nn.Linear(4096,4096),nn.ReLU(),
        nn.Dropout(0.5),nn.Linear(4096,10)
    )

net=vgg(conv_arch)
X = torch.randn(size=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.__class__.__name__,'output shape:\t',X.shape)
#把网络分成五块,每一块把高宽减半,通道数翻倍

#由于VGG-11⽐AlexNet计算量更⼤,因此我们构建了⼀个通道数较少的⽹络,⾜够⽤于训练Fashion-MNIST数据集。
ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)
#除了使⽤略⾼的学习率外,模型训练过程与 7.1节中的AlexNet类似。
lr, num_epochs, batch_size = 0.05, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

一部分结果: 

每个块的高度和宽度减半,最终高度和宽度都为7。最后再展平表示,送入全连接层处理。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值