二次型在一点的_【射影几何】第七谈——再看二次曲线

本文是射影几何系列的第七谈,深入探讨二次型和二次曲线的关系。介绍了二次函数、二次型的基本概念,以及如何从二次型过渡到二次曲线。文章还讨论了二次点列的交比不变性,为后续的射影几何研究奠定基础。
摘要由CSDN通过智能技术生成

60ef7a1337f0d65b059354fba83842df.png

失踪人口回归!

相信很多朋友们都在期待这部分内容。毕竟大部分入坑我射影几何系列的朋友可能都是想知道射影几何在圆锥曲线上有什么样的帮助。

其实,我的确不忍心把这个坑做到一半就废弃。但是由于我得到的正向回馈实在是太少,导致我曾经一度没有动力继续更新。身边也有朋友觉得我一直这么做不值得。我曾经一度想退乎,但是我目前还是没有退。

也许我怀疑过自己是否真的有能力继续写这样的东西。但至少此时此刻,我还是选择,把这个系列先继续着。

那么,我们也就开始我们的射影几何的第二部分吧!

锐腾君的个人专栏:https://zhuanlan.zhihu.com/return-mathe01

锐腾和他的复读机们的QQ群:761522078


上期回顾

王锐腾-return:【射影几何】第六谈——代数学下的射影变换​zhuanlan.zhihu.com
1.群与射影变换群
2.利用坐标确定交比
3.射影变换的代数表达式

写在前面

之前的六谈中,我力图尽量避免大学常用的知识来进行讲解。但是我发现,有时候让大家更快接触一些后面的知识可能是一件好事。所以本谈开始我可能会使用一些线性代数相关的内容来进行后面的一些讲解。

另外,由于本人的高等代数几乎都跟着谢启鸿教授( @torsor )学习的。事实上,他的高等代数学习体系是很完整的,并且可以在bilibili上观看他的教学视频和习题课视频,因此我十分推荐没有线性代数基础,或者想要提高线性代数的读者们去观看谢老师的视频。

谢启鸿高等代数​www.bilibili.com 谢启鸿高等代数习题课​www.bilibili.com

我在记号上可能会使用谢老师教材的一些记号,也会使用一些我自己习惯的记号。因此在这里注明一下:

记号1:(转置符号)
表示将矩阵
元素变成
元素后得到的新矩阵。

记号2:(矩阵集合)
表示定义在数域
上的
阶矩阵全体,
表示定义在数域
上的
阶可逆矩阵全体。

记号3:(正定符号)
,表示矩阵
正定,也即对任意同阶的列向量
,有
.

二次函数和二次型的基本知识

多变元齐二次函数

我们很多时候会遇到一些齐次的表达式

对于齐一次的表达式

我们可以将它表示为矩阵形式

那么对于一些齐二次的表达式

由于

,我们可以重新调整系数,使得
,从而得到

上述表达式称为

元齐二次函数的标准表达式。

我们期望找到一种用矩阵的方式表达的方法来描述这个齐二次函数。

二次型的表达式

对于齐二次函数

我们定义下面的矩阵

称为这个齐二次函数

相伴二次型矩阵。我们容易发现
命题1:相伴二次型矩阵和齐二次函数是一一对应的,两者相互之间唯一确定
命题2:相伴二次型矩阵是对称阵,即满足

进一步,我们将变元写成列向量形式,即令

,那么我们就可以将这个齐二次函数
表达为
,我们将这个式子写开就是:

与一般的二次函数的联系

在之前的文章中我们已经介绍过了,我们可以将一个

变元的非齐次坐标看做一个
元的齐次坐标。后者不仅可以完全概括前者,甚至后者还能表示更多的点。

读者在中学阶段所学过的二次函数一般都是形如

注:这里写成
是为了和上面对应,这件事我在下文中已经提到过了。
王锐腾-return:【圆锥曲线】二次曲线方程与形状的关系​zhuanlan.zhihu.com
1e6f24d66899da8dcace5a20b6436eb6.png

那么我们将一维非齐次坐标

改写为二元齐次坐标
,则上面的表达式就可以写成:

,但是读者很容易发现,对于对应同一点的不同齐次坐标,它对应的函数值其实并不同。所以事实上,我们不能完全用齐次坐标来代替我们进行讨论,但是我们可以固定其中一个变量,那么就有

这其实也是一种处理非齐次二次函数的一种手段。

二次函数的极值问题

读者在中学阶段应当已经学过一元二次函数的极值。我们有一个很漂亮的结论

命题3:若
,则函数
仅当
时有最小值

事实上,我们也可以进一步来考虑对于多变元的二次函数是否有类似的性质。

定理1:若
,那么关于
维列向量
的函数
仅当
时有最小值

下面我们给出证明,我们采用上一部分的技术手段,选取矩阵

,并构造矩阵
,那么得到:

取定

,那么函数

取定

,则

并且我们容易求得,

的最后一个分量是
,因此可记为

我们展开

容易得到

由于

是严格的,所以取等只能

此时

.

从二次型到二次曲线

我们在第一谈中就已经说过,点和线在射影平面上是对偶的元素。点和线都有齐次坐标,按照对偶原理,我们可以从点出发定义一个齐二次方程的零点集,也可以从线齐次坐标定义一个齐二次方程的零点集合。

我们先从点齐次坐标开始

二阶曲线的定义

我们利用点齐次坐标来定义二阶曲线。对于满足

的所有点

全体构成一条曲线,称为
二阶曲线

我们将其整理成二次型的表达,也为:

如果采用非齐次坐标的描述:

就是大家熟知的

二级曲线的定义

我们也可以利用线齐次坐标,找出满足方程

的所有直线。

我们将它绘制出来,可以得到这些线的关系

f8b199b5181f496b3bb71202ab353651.png
红色的就是二级曲线

这些直线的包络曲线被称为二阶曲线

事实上,我们发现采用上面两种方式定义出来的曲线是一样的。因此我们将两种曲线统称为二次曲线。


二次点列及其交比不变性

有了二次曲线的概念以后我们自然要考虑开始研究它的一些射影不变量。我们注意到,二次曲线事实上,它的结构和一条射影直线是十分类似的,它们都是一个封闭的曲线。因此,我们可以考虑在二次曲线上取四个点,使得它们构成一个点列。

二次点列的定义

在一个二次曲线

上,我们任取四个点
,则称
是(关于
的)
二次点列

8f259e4bba90e304fd136587a71e7d71.png
ABCD四点构成一个二次点列

二次点列的交比

对于二次点列,我们希望定义一个交比。

考虑到“点列”和“线束”的对偶性,我们可以尝试用线束的交比来定义点列的交比。

在二次曲线上再任取一点

,过
引出过
的四条直线

84ff96aa9edfc451d007039fb865661e.png

那么我们就将二次点列

的交比定义为线束
的交比。

但是这样又会出现一个问题。

随着

的位置的变化,这个线束的交比真的是不变的吗?
定理2:线束
的交比不依赖于点
的选取

我们先考虑圆的情形

7364156eef795d9f8ce633d8b112b5f5.png

根据圆周角的性质,我们知道

注意到线束

的交比由表达式
给出

从而线束

的交比与线束
的交比相等。

由于点

是任意的,所以线束
的交比不依赖于点
的选取。

对于一般的圆锥曲线,我们可以通过圆进行射影变换得到。由于射影变换保持了线束交比不变,从而也就保持了二次点列的交比不变

那么对于更加一般的二次曲线,这个定理还成立吗?我们就留到下一篇文章再讨论。


不知道还有多少人能记得我。可能许久不写文章,今天写出来会有很多生疏的地方,毕竟写文章的时候我也有一点点困了。

这段时间没怎么写知乎,我逐渐发现其实可能相比于写这么一些没人看的长篇大论。我可能更加喜欢面对面地去教别人一些东西。我能够实时看到对面的人的反应,我可以立刻知道哪些地方需要我讲的更细致一点。

知乎上我太难得到其他人的反馈了,这种没有反馈让我时常陷入自我怀疑,让我失去继续更新的动力。

为了保持我的身心健康,所以接下来我可能知乎只会是有空的时候来更新一下,可能活跃度会大不如从前了。(我应该不会掉粉吧)

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值