在深度学习和神经网络的上下文中,.train()
和 .eval()
是两个用于控制网络训练状态的方法,它们的主要区别如下:
-
训练模式与评估模式:
-
.train()
:将网络设置为训练模式。在训练模式下,网络会启用诸如Dropout和Batch Normalization等在训练过程中需要用到的技术。这些技术有助于模型学习,但在模型评估或推理时不需要。 -
.eval()
:将网络设置为评估模式。在评估模式下,网络会关闭Dropout和Batch Normalization等操作,确保模型在评估或测试数据时的表现与其在训练时学到的行为一致。
-
-
参数更新:
-
在训练模式下,网络的参数(权重和偏置)会根据损失函数和优化算法进行更新。
-
在评估模式下,网络的参数不会更新,这有助于在评估模型性能时获得更准确的结果。
-
-
用途:
-
.train()
用于模型的训练阶段,此时模型通过反向传播算法学习数据中的模式。 -
.eval()
用于模型的评估或测试阶段,此时模型用于预测或评估其在未见数据上的性能
-
简单来说,就是在训练模式下网络的参数会更新,评估模式下参数不会更新。
正如他们的名字训练,评估。
此处以dropout层为例来感受不同模式如何影响网络的行为:
实例:
import torch
import torch.nn as nn
# 假设我们有一个简单的神经网络,只包含Dropout层
class SimpleNetWithDropout(nn.Module):
def __init__(self):
super(SimpleNetWithDropout, self).__init__()
self.fc1 = nn.Linear(10, 5) # 一个简单的线性层
self.dropout = nn.Dropout(0.5) # Dropout层,丢弃概率为0.5
def forward(self, x):
x = self.fc1(x)
print(f"经过fc1:{x}")
x = self.dropout(x) # Dropout层在训练和评估模式下表现不同
return x
# 实例化网络
net = SimpleNetWithDropout()
# 将网络设置为训练模式
net.train()
print("training mode.")
print("Forward pass in training mode with Dropout:")
inputs = torch.randn(1, 10) # 随机生成一些输入数据
outputs_train = net(inputs) # 前向传播
print(outputs_train)
# 将网络设置为评估模式
net.eval()
print("evaluation mode.")
print("Forward pass in evaluation mode with Dropout:")
with torch.no_grad(): # 在评估模式下,我们通常使用torch.no_grad()来禁用梯度计算
outputs_eval = net(inputs) # 再次进行前向传播,此时网络处于评估模式
print(outputs_eval)
输出:
training mode.
Forward pass in training mode with Dropout:
经过fc1:tensor([[ 0.3143, 0.2855, -0.8644, -1.0411, -0.8121]],
grad_fn=<AddmmBackward0>)
tensor([[ 0.0000, 0.5709, -1.7288, -0.0000, -1.6241]], grad_fn=<MulBackward0>)#可以发现在训练模式下经过dropout层,dropout层进行了置零操作(1,3位置)
#2,4,5位置元素乘以二的原因放在本文最后
evaluation mode.
Forward pass in evaluation mode with Dropout:
经过fc1:tensor([[ 0.3143, 0.2855, -0.8644, -1.0411, -0.8121]])
tensor([[ 0.3143, 0.2855, -0.8644, -1.0411, -0.8121]])#可以发现在评估模式下经过dropout层,dropout层失效
dropout的行为:nn.Dropout()-CSDN博客
Dropout层还有一个行为,那就是在训练模式下,对于那些没有被置零的元素,它们的值会被乘以一个缩放因子,以保持期望的输出值不变。这个缩放因子是1 / (1 - p)
,其中p
是Dropout概率。在例子中,Dropout概率p
是0.5,所以缩放因子是1 / (1 - 0.5) = 2
。这意味着在训练模式下,只有50%的神经元输出会被保留,而保留的输出值会被乘以2,以保持输出的期望值与没有Dropout时相同。
Dropout是一种正则化技术,用于防止神经网络过拟合。它的工作原理是在训练过程中随机“丢弃”(即设置为0)网络中的一部分神经元输出。这样做的目的是减少神经元之间复杂的共适应关系,使得模型更加健壮,能够从数据中学习到更加泛化的特征。
然而,如果我们简单地将一部分神经元的输出设置为0,那么网络的输出规模(即输出向量的总和)会减小,这会影响网络的学习过程,因为梯度下降算法依赖于输出和目标之间的差异来更新权重。为了解决这个问题,Dropout引入了一个缩放因子,以保持输出的期望值不变。
具体来说,如果我们设置Dropout率为p
,那么在每次训练迭代中,只有(1-p)
比例的神经元会保留其输出。如果没有缩放,那么输出的期望值将会是原来的(1-p)
倍。为了补偿这一点,我们对保留的神经元输出乘以1/(1-p)
,这样输出的期望值就能保持不变。
以本文例子为例,Dropout率为0.5,这意味着平均有50%的神经元输出会被保留。如果没有缩放,输出的期望值将会是原来的50%,即0.5
倍。为了保持期望值不变,我们需要将保留的输出乘以1/(1-0.5) = 2
。这样,即使只有一半的神经元输出被保留,整个网络的输出期望值仍然与没有Dropout时相同。
这里有一个数学上的解释:
假设原始输出为y
,经过Dropout后,我们只保留了一部分输出,设为y'
。在没有Dropout的情况下,y
的期望值是E[y]
。在有Dropout的情况下,我们希望y'
的期望值也是E[y]
。
由于Dropout,y'
中的每个元素都有p
的概率被置为0,有(1-p)
的概率保持不变。因此,y'
中每个元素的期望值是(1-p) * y
。为了使y'
的期望值与y
相同,我们需要将y'
中的每个元素乘以1/(1-p)
,这样y'
的期望值就变为了(1/(1-p)) * (1-p) * y = y
。
这就是为什么在训练模式下,Dropout层会将保留的输出乘以1/(1-p)
,以保持输出的期望值与没有Dropout时相同。