.train()和.eval()区别

在深度学习和神经网络的上下文中,.train().eval() 是两个用于控制网络训练状态的方法,它们的主要区别如下:

  1. 训练模式与评估模式

    • .train():将网络设置为训练模式。在训练模式下,网络会启用诸如Dropout和Batch Normalization等在训练过程中需要用到的技术。这些技术有助于模型学习,但在模型评估或推理时不需要。

    • .eval():将网络设置为评估模式。在评估模式下,网络会关闭Dropout和Batch Normalization等操作,确保模型在评估或测试数据时的表现与其在训练时学到的行为一致。

  2. 参数更新

    • 在训练模式下,网络的参数(权重和偏置)会根据损失函数和优化算法进行更新。

    • 在评估模式下,网络的参数不会更新,这有助于在评估模型性能时获得更准确的结果。

  3. 用途

    • .train() 用于模型的训练阶段,此时模型通过反向传播算法学习数据中的模式。

    • .eval() 用于模型的评估或测试阶段,此时模型用于预测或评估其在未见数据上的性能

简单来说,就是在训练模式下网络的参数会更新,评估模式下参数不会更新。

正如他们的名字训练,评估。

此处以dropout层为例来感受不同模式如何影响网络的行为:

实例:

import torch
import torch.nn as nn

# 假设我们有一个简单的神经网络,只包含Dropout层
class SimpleNetWithDropout(nn.Module):
    def __init__(self):
        super(SimpleNetWithDropout, self).__init__()
        self.fc1 = nn.Linear(10, 5)  # 一个简单的线性层
        self.dropout = nn.Dropout(0.5)  # Dropout层,丢弃概率为0.5

    def forward(self, x):
        x = self.fc1(x)
        print(f"经过fc1:{x}")
        x = self.dropout(x)  # Dropout层在训练和评估模式下表现不同
        return x

# 实例化网络
net = SimpleNetWithDropout()

# 将网络设置为训练模式
net.train()
print("training mode.")
print("Forward pass in training mode with Dropout:")
inputs = torch.randn(1, 10)  # 随机生成一些输入数据
outputs_train = net(inputs)  # 前向传播
print(outputs_train)

# 将网络设置为评估模式
net.eval()
print("evaluation mode.")
print("Forward pass in evaluation mode with Dropout:")
with torch.no_grad():  # 在评估模式下,我们通常使用torch.no_grad()来禁用梯度计算
    outputs_eval = net(inputs)  # 再次进行前向传播,此时网络处于评估模式
    print(outputs_eval)

输出:

training mode.
Forward pass in training mode with Dropout:
经过fc1:tensor([[ 0.3143,  0.2855, -0.8644, -1.0411, -0.8121]],
       grad_fn=<AddmmBackward0>)
tensor([[ 0.0000,  0.5709, -1.7288, -0.0000, -1.6241]], grad_fn=<MulBackward0>)

#可以发现在训练模式下经过dropout层,dropout层进行了置零操作(1,3位置)

#2,4,5位置元素乘以二的原因放在本文最后


evaluation mode.
Forward pass in evaluation mode with Dropout:
经过fc1:tensor([[ 0.3143,  0.2855, -0.8644, -1.0411, -0.8121]])
tensor([[ 0.3143,  0.2855, -0.8644, -1.0411, -0.8121]])

#可以发现在评估模式下经过dropout层,dropout层失效

dropout的行为:nn.Dropout()-CSDN博客

Dropout层还有一个行为,那就是在训练模式下,对于那些没有被置零的元素,它们的值会被乘以一个缩放因子,以保持期望的输出值不变。这个缩放因子是1 / (1 - p),其中p是Dropout概率。在例子中,Dropout概率p是0.5,所以缩放因子是1 / (1 - 0.5) = 2。这意味着在训练模式下,只有50%的神经元输出会被保留,而保留的输出值会被乘以2,以保持输出的期望值与没有Dropout时相同。

Dropout是一种正则化技术,用于防止神经网络过拟合。它的工作原理是在训练过程中随机“丢弃”(即设置为0)网络中的一部分神经元输出。这样做的目的是减少神经元之间复杂的共适应关系,使得模型更加健壮,能够从数据中学习到更加泛化的特征。

然而,如果我们简单地将一部分神经元的输出设置为0,那么网络的输出规模(即输出向量的总和)会减小,这会影响网络的学习过程,因为梯度下降算法依赖于输出和目标之间的差异来更新权重。为了解决这个问题,Dropout引入了一个缩放因子,以保持输出的期望值不变。

具体来说,如果我们设置Dropout率为p,那么在每次训练迭代中,只有(1-p)比例的神经元会保留其输出。如果没有缩放,那么输出的期望值将会是原来的(1-p)倍。为了补偿这一点,我们对保留的神经元输出乘以1/(1-p),这样输出的期望值就能保持不变。

以本文例子为例,Dropout率为0.5,这意味着平均有50%的神经元输出会被保留。如果没有缩放,输出的期望值将会是原来的50%,即0.5倍。为了保持期望值不变,我们需要将保留的输出乘以1/(1-0.5) = 2。这样,即使只有一半的神经元输出被保留,整个网络的输出期望值仍然与没有Dropout时相同。

这里有一个数学上的解释:

假设原始输出为y,经过Dropout后,我们只保留了一部分输出,设为y'。在没有Dropout的情况下,y的期望值是E[y]。在有Dropout的情况下,我们希望y'的期望值也是E[y]

由于Dropout,y'中的每个元素都有p的概率被置为0,有(1-p)的概率保持不变。因此,y'中每个元素的期望值是(1-p) * y。为了使y'的期望值与y相同,我们需要将y'中的每个元素乘以1/(1-p),这样y'的期望值就变为了(1/(1-p)) * (1-p) * y = y

这就是为什么在训练模式下,Dropout层会将保留的输出乘以1/(1-p),以保持输出的期望值与没有Dropout时相同。

### PyTorch中`train()``eval()`方法的区别及用法 #### 1. 基本概念 在PyTorch中,模型可以通过调用`.train()`或`.eval()`来切换其运行模式。这两种模式的主要区别在于某些特定层的行为会有所不同,例如Batch Normalization (BN) 层Dropout层。 - **`model.train()`**: 将模型设置为训练模式。在这种模式下,像DropoutBatchNorm这样的层将以它们的设计方式正常工作[^3]。 - **`model.eval()`**: 将模型设置为评估模式。在此模式下,Dropout层会被禁用(即不会随机丢弃神经元),而BatchNorm层则使用全局统计量而不是每批次的统计数据[^4]。 #### 2. 使用场景 ##### 训练阶段 (`model.train()`) 当模型处于训练状态时,通常需要启用梯度计算以便更新权重参数。此时,Dropout层按照设定的概率随机失活部分神经元以防止过拟合;BatchNorm层基于当前mini-batch的数据动态调整均值方差[^5]。 示例代码如下: ```python model.train() for batch_idx, (data, target) in enumerate(train_loader): optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() ``` ##### 测试/验证阶段 (`model.eval()`) 进入测试或者推理阶段之前应先执行`model.eval()`命令关闭掉那些仅适用于训练期间的功能模块比如dropout机制等等[^1]。此外,在此过程中还可以通过上下文管理器`with torch.no_grad():`进一步减少不必要的资源消耗因为这些操作都不涉及任何反向传播过程所以没必要保留中间变量用于后续求导运算从而达到节约显存的目的[^2]。 示例代码如下: ```python model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: output = model(data) test_loss += F.nll_loss(output, target, reduction='sum').item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() ``` #### 3. 注意事项 - 如果忘记调用`model.eval()`就可能导致错误的结果特别是在含有batch normalization 或 dropout 组件的情况下由于它们默认行为依赖于是否正在被训练因此即使是在预测新样本的时候也可能会得到不一致的表现。 - 同样重要的是记得重新激活训练前的状态也就是再次调用`model.train()`否则继续下一个epoch时可能会影响性能表现. --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值