背包问题学习

背包问题

记录最近两天在AcWing上学习背包问题的总结与思考 原文链接


贪心算法

在第一次遇到背包问题的时候,我相信很多人的想法和我一样,就是使用贪心算法,我们只需要算出每件物品的性价比,也就是物品权重(价值/重量),然后排序,从高向低选做局部最优解,由此得出整体最优解,求出最大价值

这种方法对于可拆分背包当然可以,但是对于01背包,貌似就没那么简单了。

举个例子:求 N   =   3 ,   V   =   15 ,   v   =   [   6 ,   7 ,   10   ] ,   w   =   [   8 , 9 , 15   ] N~=~3,~V~=~15,~v~=~[~6,~7,~10~],~w~=~[~8,9,15~] N = 3, V = 15, v = [ 6, 7, 10 ], w = [ 8,9,15 ] 时的最优解,如果使用贪心那么得出来的答案会是 w   [   2   ]   =   15 w~[~2~]~=~15 w [ 2 ] = 15显然答案是错误的,应该是 w   [   0   ]   +   w   [   1   ]   =   17 w~[~0~]~+~w~[~1~]~=~17 w [ 0 ] + w [ 1 ] = 17。那为什么呢?

因为对于贪心算法,他只关注性价比忽视了背包的空间,在空间上的浪费就会增加,导致单位体积物品的价值降低了,最后反而并不是整体最优解。

对于这种问题,我们使用动态规划算法来解决(当然暴力枚举也可以,这里不考虑),动态规划与贪心算法其实很相似,他们唯一的不同在于:贪心每次只做一个局部最优决策,每往下的决策越少;而动态规划则是重叠子问题,将原始问题分成若干个相关子问题。虽然都是通过获得每一个最优子结构来获得整体最优。但是这么对比起来,贪心是不是就显得有点鼠目寸光了。而动态规划则是统筹全局呢。


动态规划

那么现在我们来学习动态规划的使用,首先我们要知道,既然叫动态规划,那么他一定是动态的,同时他的每个状态依赖于前一次的状态。为了方便描述这种状态,现在我们可以给他一个二维表:dp[N][V]

状态:dp[i][j]  表示选择前 i 个物品,体积为 j 时的最优方案
状态转移方程:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])  (_当作递推公式看就行了_)
dp[i - 1][j]:上一个状态体积为 j 的价值
dp[i - 1][j - v[i]] + w[i]:上一状态体积为 {j - v[i] (第 i 件物品体积)}的价值 + w[i](第 i 件物品的价值)

这样我们就可以看到每个状态下各种体积的最优解。


01 01 01背包

问题描述

N N N 件物品和一个容量是 V V V 的背包。每件物品只能使用一次。

i i i 件物品的体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

数据范围

0 < N , V ≤ 1000 0<N,V≤1000 0<N,V1000
0 < v i , w i ≤ 1000 0<v_i,w_i≤1000 0<vi,wi1000


算法:动态规划二维表

时间和空间复杂度:   O ( n ⋅ m ) ~O(n·m)  O(nm)

现在我们用上述方法解决 01 01 01背包问题。

核心代码
for (int i = 1; i <= n; i++) {
	for (int j = 1; j <= m; j++) {
		// 延续上一状态 
	    dp[i][j] = dp[i-1][j];
	    if (j >= v[i])
		    dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + w[i]); // 状态转移 
	}
}

好了,这样就可以解决 01 01 01 背包的简单问题了。

不过,到这里还没有结束,如果真的理解了动态规划,那么应该很容易发现,上述代码是可以优化的。

我们每多一个物品做状态转移,只需要上一次的全部状态,并不需要之前所有状态;所以我们可以将二维表转化为一维表来节省空间的使用。空间复杂度降到   O ( m ) ~O(m)  O(m)

注意,这里的j循环是从高位到低位,因为dp[j-v[i]]表示的是容量为j-v[i]的背包装前i-1个物品的最大价值。物品容量i最大价值循环,从高位到低位同一物品至多拿一次;反之,则会出现多次。

算法:动态规划一维表

C++ 代码
#include <bits/stdc++.h>
using namespace std;
#define N 1007
int n, m, v, w, dp[N];
int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> v >> w;
		for (int j = m; j >= v; j--) {
			dp[j] = max(dp[j], dp[j-v] + w);
		}
	}
	cout << dp[m];
	return 0;
}

现在 01 01 01 背包问题结束了,我们来看完全背包问题。


完全背包

完全背包是在 01 01 01 背包的基础上将每种物品数量变为 ∞ ∞ 大,而不是只能取一个了。

思路调整

还记得我们之前 01 01 01 背包的状态转移方程吗?

dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])

现在我们对他进行延申。

dp[i][j]        = max(dp[i - 1][j - k * v[i]] + k * w[i]) (k = 0, 1, ··· , n)
dp[i][j - v[i]] = max(dp[i - 1][j - k * v[i]] + k * w[i]) (k = 1, 2, ··· , n)

将上述两式相减就可以得出完全背包的状态转移方程了。

dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])

01 01 01 背包一样,我们将二维表进行优化得出代码:

C++ 代码
#include <bits/stdc++.h>
using namespace std;
#define N 1007
int n, m, v, w, dp[N];
int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
	    cin >> v >> w;
		for (int j = v; j <= m; j++) {
			dp[j] = max(dp[j], dp[j-v] + w);
		}
	}
	cout << dp[m];
	return 0;
} 

注意这里完全背包与 01 01 01 背包的的区别!!!

我们现在将两个方程放在一起,并对核心代码进行比较。

状态转移方程
dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i]) // 01背包
dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])   // 完全背包
核心代码
// 01背包
for (int i = 1; i <= n; i++) 
for (int j = m; j <= v[i]; j++) // 从高位到低位
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
// 完全背包
for (int i = 1; i <= n; i++) 
for (int j = v[i]; j <= m; j++) // 从低位到高位
dp[j] = max(dp[j], dp[j-v[i]] + w[i]);

还记得之前二维表优化为一维表的方法吗?在这里我们也可以这样理解,dp[j-v[i]]表示的是容量为j-v[i]的背包装前i-1个物品的最大价值。物品容量i最大价值循环,从高位到低位同一物品至多出现一次,而从低位到高位则同一物品可以出现多次。


学完 01 01 01 背包和完全背包,趁着脑子还热,我们继续来学习一下多重背包问题吧!!!先来看看问题描述。


多重背包问题 I

问题描述

N N N 件物品和一个容量是 V V V 的背包。

i i i 件物品最多有 s i s_i si 件,每件体积是 v i v_i vi,价值是 w i w_i wi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。

输出最大价值。

数据范围

0 < N , V ≤ 100 0<N,V≤100 0<N,V100
0 < v i , w i , s i ≤ 100 0<v_i,w_i,s_i≤100 0<vi,wi,si100

算法:动态规划 + 暴力

时间复杂度:   O ( m ⋅ n ⋅ s ) ~O(m·n·s)  O(mns)

我们先来看一下多重背包问题的状态转移方程,用 k k k 表示每个物品选中次数,

f[i][j] = max(f[i - 1][j - k * v[i]] + k * w[i]) (k = 0, 1, ···, s[i])

想要得到最终价值并不难,我们只要在 01 01 01 背包的 j j j 循环下加个 k k k 循环,循环给出两个条件:

1 )   k   ≤   s 1)~k~≤~s 1) k  s
2 )   k   ∗   v   ≤   j 2)~k~*~v~≤~j 2) k  v  j

这样就可以得出最大价值了。

C++ 代码
#include <bits/stdc++.h>
using namespace std;
#define N 107
int n, m, v, w, s, dp[N];
int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) { 
		cin >> v >> w >> s;
		for (int j = m; j >= v; j--) {
			for (int k = 1; k <= s && k * v <= j; k++) {
				dp[j] = max(dp[j], dp[j - k * v] + k * w);
			}
		}
	}
	cout << dp[m];
	return 0;
} 

这样就结束了吗?并没有,如果我们将范围扩大到: 0 < N ≤ 1000 0<N≤1000 0<N1000 0 < V ≤ 2000 0<V≤2000 0<V2000, 0 < v i , w i , s i ≤ 2000 0<v_i,w_i,s_i≤2000 0<vi,wi,si2000 会怎么样呢?显然 n ⋅ m ⋅ s  >  1 0 9 n·m·s~>~10^9 nms  109,这样提交一定是会 T L E TLE TLE 的。那么我们该怎么优化呢?


多重背包问题 II

数据范围

0 < N ≤ 1000 0<N≤1000 0<N1000
0 < V ≤ 2000 0<V≤2000 0<V2000
0 < v i , w i , s i ≤ 2000 0<v_i,w_i,s_i≤2000 0<vi,wi,si2000

算法:动态规划 + 二进制

时间复杂度:   O ( m ⋅ n ⋅ l o g s ) ~O(m·n·logs)  O(mnlogs)

原来的做法是,对于每件物品,我们一次拿一个。现在我们把每种物品的总件数 s s s,分成一个又一个堆,我们每次都拿其中的一个堆,那么我们该怎么样分配呢?

我们可以利用二进制的性质对其进行优化,比如我们现在有 7 7 7 件物品,原来我们最多可能要拿 7 7 7次,现在我们使用二进制换算 7 B   =   111 7B~=~111 7B = 111,我们可以把他拆解成 100   010   001 100~010~001 100 010 001 这三个堆,他们可以组合成任意 ≤ 7 ≤7 7 的数,而且每种组合都会得到不同的数,那么我至多只需要拿 3 3 3 次就可以拿完。

假设我要拿 6 6 6 件,原来我们一个一个拿,需要拿 6 6 6 次才能全部取完。现在我只需要拿 2 2 2 次,我们只要拿   2 ,   4 ~2,~4  2, 4 这两堆就可以了。这样就可以将时间复杂度   O ( m ⋅ n ⋅ s ) ~O(m·n·s)  O(mns) 降到了   O ( m ⋅ n ⋅ l o g s ) ~O(m·n·logs)  O(mnlogs),大概从 4 ⋅ 1 0 9 4·10^9 4109 降到了 2 ⋅ 1 0 7 2·10^7 2107,可以通过。

C++ 代码
#include <bits/stdc++.h>
using namespace std;
#define N 2007
#define M 12007

// 多重背包问题 
// 二进制优化 

int n, m, vi, wi, si, k, ans;
int w[M], v[M], dp[N];

int main() {
	cin >> n >> m;
	for (int i = 1; i <= n; i++) {
		cin >> vi >> wi >> si;
		// 进行二进制拆解,每次左移一位 
		for (int k = 1; k <= si; k <<= 1) {
			w[++ans] = wi * k; // 这一位的全部价值 
			v[ans] = vi * k;   // 这一位的全部体积 
			si -= k; // 减去这一位的全部 
		}
		// 最后一位放剩余部分 
		if (si > 0) {
			w[++ans] = wi * si;
			v[ans] = vi * si;
		}
	}
	// 因为已经进行了二进制优化,所以此时 n 变为 ans 
	for (int i = 1; i <= ans; i++) {
		for (int j = m; j >= v[i]; j--) {
			dp[j] = max(dp[j], dp[j-v[i]] + w[i]);
		}
	}
	cout << dp[m];
	return 0;
}


思考?

01 01 01 背包中我们对【空间】进行了优化,空间复杂度   O ( n ⋅ m ) ~O(n·m)  O(nm) 降到了   O ( m ) ~O(m)  O(m)

在多重背包中我们利用二进制思想

对同种【物品的分类】进行了优化,时间复杂度   O ( m ⋅ n ⋅ s ) ~O(m·n·s)  O(mns) 降到了   O ( m ⋅ n ⋅ l o g s ) ~O(m·n·logs)  O(mnlogs)

到此已经是最优了吗?我们还可以对哪些部分进行优化?

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值