鸟类音频数据预处理方法

本文提出一种鸟类音频数据预处理方法,结合卷积神经网络和DBSCAN聚类算法,从原始频谱图中筛选噪音数据,提升鸟类物种分类准确率。通过特征向量计算、Faiss距离矩阵和DBSCAN聚类,有效地剔除噪音频谱图,创建更干净的音频样本集,提高了后续识别的准确性。
摘要由CSDN通过智能技术生成

摘要

【目的】从原始鸟类音频频谱图样本集中自动筛选并剔除噪音频谱图,可以提升鸟类物种分类的准确率。【方法】本文基于卷积神经网络,对频谱图提取特征向量,借助Faiss算法库计算特征向量的距离矩阵,然后使用DBSCAN (Density-Based Spatial Clustering of Applications with Noise)聚类算法筛选出噪音频谱图,最后将经过筛选后的频谱图样本集输入到分类模型中进行鸟类物种分类。【结果】通过本方法,从频谱图样本集中剔除了大量噪音频谱图,使得后续的鸟类物种的分类准确率得到了提升。【局限】由于DBSCAN算法聚类的效果受到邻域阈值(ε)和密度阈值(MinPts)参数的影响比较大,因此未来应该去探索自适应的方法获得参数值。【结论】本文将卷积神经网络和数据挖掘中的密度聚类算法相结合,提出了一种鸟类音频数据预处理方法,该方法可以自动筛选噪音频谱图,为后续的鸟类物种识别提供了高质量的频谱图样本集。

关键词: 鸟类音频; 频谱图; 数据筛选; 卷积神经网络; 聚类

引言

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值