鸟类音频数据预处理方法

本文提出一种鸟类音频数据预处理方法,结合卷积神经网络和DBSCAN聚类算法,从原始频谱图中筛选噪音数据,提升鸟类物种分类准确率。通过特征向量计算、Faiss距离矩阵和DBSCAN聚类,有效地剔除噪音频谱图,创建更干净的音频样本集,提高了后续识别的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

【目的】从原始鸟类音频频谱图样本集中自动筛选并剔除噪音频谱图,可以提升鸟类物种分类的准确率。【方法】本文基于卷积神经网络,对频谱图提取特征向量,借助Faiss算法库计算特征向量的距离矩阵,然后使用DBSCAN (Density-Based Spatial Clustering of Applications with Noise)聚类算法筛选出噪音频谱图,最后将经过筛选后的频谱图样本集输入到分类模型中进行鸟类物种分类。【结果】通过本方法,从频谱图样本集中剔除了大量噪音频谱图,使得后续的鸟类物种的分类准确率得到了提升。【局限】由于DBSCAN算法聚类的效果受到邻域阈值(ε)和密度阈值(MinPts)参数的影响比较大,因此未来应该去探索自适应的方法获得参数值。【结论】本文将卷积神经网络和数据挖掘中的密度聚类算法相结合,提出了一种鸟类音频数据预处理方法,该方法可以自动筛选噪音频谱图,为后续的鸟类物种识别提供了高质量的频谱图样本集。

关键词: 鸟类音频; 频谱图; 数据筛选; 卷积神经网络; 聚类

引言

### 鸟类分类数据集的选择 对于鸟类分类的任务,尤其是针对YOLO模型的应用,选择合适的数据集至关重要。考虑到YOLO在处理小型物体方面存在一定的局限性[^2],理想的数据集应该具备足够的标注精度以及合理的样本数量来克服这一挑战。 #### 常见的鸟类识别数据集 1. **CUB-200-2011 (Caltech-UCSD Birds)** CUB-200-2011 是一个广泛使用的细粒度视觉分类数据集,包含了来自200种不同种类的约11,788张图片,并且每幅图像都附有详细的部位注解信息。这些特性使得它非常适合用来训练像YOLO这样的目标检测器,尤其是在需要区分相似物种的情况下。 2. **iNaturalist Dataset** iNaturalist 数据集由Google联合加州科学院发布,旨在促进生物多样性研究。最新版本提供了超过45万张高质量的照片覆盖了数千个动植物类别,其中也包括了大量的鸟类照片及其位置标签。由于其规模庞大且多样化的特点,这有助于提高YOLO对各种环境下的泛化能力。 3. **BirdCLEF Challenge DataSets** BirdCLEF是由LifeCLEF组织发起的一系列竞赛所使用的公开数据集合之一,专注于自动化的野外声音记录分析与物种鉴定。虽然主要关注音频信号处理,但也提供了一定量经过人工验证过的图像资源可用于辅助学习。 #### 准备适合YOLO的数据格式 为了让上述任何一个数据集能够被有效地应用于YOLO框架内,通常还需要做一些预处理工作: - 将原始图片按照 `train` 和 `test` 进行划分; - 对于每一类别的实例,在对应的文件夹下创建子目录存储相应类型的图片; - 创建包含Bounding Box坐标的`.txt` 文件作为YOLO所需的label输入形式; ```python import os from PIL import Image import xml.etree.ElementTree as ET def convert_annotation(image_id, list_file, classes): in_file = open('annotations/%s.xml' % image_id) tree=ET.parse(in_file) root = tree.getroot() for obj in root.iter('object'): difficult = obj.find('difficult').text cls = obj.find('name').text if cls not in classes or int(difficult)==1: continue cls_id = classes.index(cls) xmlbox = obj.find('bndbox') b = (float(xmlbox.find('xmin').text), float(xmlbox.find('ymin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymax').text)) list_file.write(" " + ",".join([str(a) for a in b]) + ',' + str(cls_id)) sets=[('2012', 'train'), ('2012', 'val')] classes = ["bird"] # 如果仅限于特定种类则替换为具体名称列表 for year, image_set in sets: image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split() list_file = open('%s_%s.txt'%(year, image_set), 'w') for image_id in image_ids: list_file.write('/path/to/images/%s.jpg'%image_id) convert_annotation(image_id, list_file, classes) list_file.write('\n') list_file.close() ``` 此脚本展示了如何读取标准Pascal VOC XML格式的annotation并转换成YOLO所需要的简单文本格式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值