生物医疗场景下的隐私保护计算应用

本文探讨了在生物医疗场景下,隐私保护计算如何解决数据孤岛问题,保障数据安全共享。介绍了安全多方计算、可信执行环境和联邦学习三种主流技术,并举例说明了它们在基因组学分析、罕见病研究、新药辅助研发和医学影像分析中的应用。文章指出,未来面临平台兼容性和落地部署的挑战,需要加强跨领域合作,提升技术的精确性和安全性。" 113565864,10540955,FreeSWITCH GUI:最佳开源解决方案及安装要求,"['FreeSWITCH', '图形用户界面', '开源软件', '通信系统', '数据库']
摘要由CSDN通过智能技术生成

摘要

医疗信息化的浪潮进一步丰富了生物医学数据的维度和规模,然而出于数据流动合规性、隐私安全和维护自身权益的考虑,这些数据往往局限在单一机构里。数据之间无法形成互联互通,就无法释放真正的价值。正是受到这些因素的驱动,被认为是技术层面最优解的隐私保护计算快速从幕后走向台前,进入了快速发展的阶段。分别从技术和实际应用两个角度对隐私保护计算在医疗场景中的应用进行分析和研究。

关键词: 隐私保护计算; 联邦学习; 可信执行环境; 生物医学

0 引言

在数字经济时代,不仅数据成为了新的生产要素,同时数据要素的市场化发

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值