摘要
光学乐谱识别是音乐智能化发展的关键部分,在音乐教学、创作等领域有重要应用价值。针对现有吉他谱识别方法步骤繁琐、识别精度低等问题,提出一种基于深度学习的吉他谱识别方法。首先通过分析吉他谱的特点,将吉他谱水平分割为品格音符图像、减时线图像、休止符图像和增时线图像;然后将品格音符图像依次与减时线图像叠加,输入到第1个CRNN模型中进行识别,将减时线图像、休止符图像和增时线图像叠加,输入到第2个CRNN模型中进行识别;最后将识别出的各个符号全局关联,获取完整的乐谱语义。实验结果表明,基于深度学习的吉他谱识别方法可达到98.3%的品格音符识别准确率和99.1%的时值音符识别准确率,与传统的吉他谱识别方法相比,该方法具有更快的识别速度与更高的识别精度。
0 引言
光学乐谱识别[1