数据驱动的未知网络威胁检测综述

本文概述了针对未知网络威胁的检测方法,从数据类型、检测方法、优缺点和适用场景等方面进行系统总结。未知威胁的检测方法包括基于非语义数据、语义数据和安全知识数据的检测,以及结合多种数据的检测。文章强调了数据在检测中的关键作用,指出获取高质量数据的挑战,并讨论了未来研究方向,如利用自然语言处理技术提取威胁情报。
摘要由CSDN通过智能技术生成

摘 要:近几年来,各类网络攻击为了逃避日益先进的检测技术正变得愈加具有隐蔽性和对抗性。无法用传统方法防御的未知网络威胁的检测问题逐渐成为网络空间安全中的研究热点。为此,从数据角度出发,系统地总结和比较了当前针对未知网络威胁检测的几类方法,详细分析并阐述了其所采用的数据、方法、优缺点以及适用场景,最后讨论了针对未知网络攻击检测的下一步研究方向。

内容目录:

1 用于未知威胁检测的数据类型

1.1 非语义数据

1.2 语义数据

1.3 安全知识数据

2 不同数据场景下的未知网络威胁的检测方法

2.1 采用非语义数据的未知网络威胁检测方法

2.2 采用非语义数据和安全知识数据的未知网络威胁检测方法

2.3 采用语义数据和非语义数据的未知网络威胁检测方法

2.4 采用语义数据和安全知识数据的未知网络威胁检测方法

3 结 语

近几年,在网络空间规模逐渐扩大、结构日趋复杂的同时,网络安全形势也越来越严峻。为了逃避日益先进的检测技术,各类网络威胁正变得愈加具有隐蔽性和对抗性。并且随着新冠肺炎疫情在世界范围内的流行,越来越多的组织将资产和业务迁移到线上,导致攻击面快速扩张,各类新型威胁数量和种类也急剧增多。Skybox Security 在《2022 年 漏 洞 和 威 胁 趋 势 报 告》中指出,2021 年 0day(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宋罗世家技术屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值