【RAG 系统高效召回1】评估指标

目录

🧠 RAG 高效召回方法全景图

🔹 1. 数据处理优化

✅ Chunk 粒度调整

✅ 保留结构与元信息

🔹 2. 检索方式增强

✅ Dense 向量检索

✅ Sparse 检索(关键词检索)

✅ Hybrid 检索(混合方式)✅推荐

🔹 3. 查询增强(Query Reformulation)

✅ Query Expansion

✅ Query Rewriting(上下文感知)

✅ Multi-Query Retrieval

🔹 4. 重排序(Re-ranking)

✅ Reranker 模型

🔹 5. 检索流程优化(系统级)

✅ Two-stage 检索

✅ Tool-based 检索

✅ LangGraph + DSPy 任务流程优化

🚀 实战推荐组合(易用 + 高性能)

🧪 Bonus:召回效果评估指标(RAGAS)


🧠 RAG 高效召回方法全景图

 


🔹 1. 数据处理优化

✅ Chunk 粒度调整

  • 常见设置:100~500 tokens

  • 太长 → 检索不准;太短 → 无法传递上下文

  • 推荐用 滑动窗口 + 语义分段

✅ 保留结构与元信息

  • 如:标题 + 正文 拼接

  • 增强查询时的语义匹配能力


🔹 2. 检索方式增强

✅ Dense 向量检索

  • 使用语义向量(Embedding)

  • 适合“语义相关但字面不同”的问题

  • 工具:FAISS, Qdrant, Weaviate

✅ Sparse 检索(关键词检索)

  • 基于关键词(TF-IDF/BM25)

  • 更适合:法律/技术词汇精准命中

  • 工具:Elasticsearch, BM25Retriever

✅ Hybrid 检索(混合方式)✅推荐

  • 将 Dense 与 Sparse 同时使用,做 score 融合

  • 示例:LangChain 的 MultiRetriever

retriever = MultiRetriever(
    retrievers=[dense_retriever, bm25_retriever],
    search_type="mmr"
)

 

🔹 3. 查询增强(Query Reformulation)

✅ Query Expansion

  • 将 query 拓展为多个变体(同义、上下位词)

  • 示例:

    • 用户问:“什么是 RAG?”

    • 系统扩展为:“什么是检索增强生成?”、“RAG 的原理是什么?”

✅ Query Rewriting(上下文感知)

  • 基于上下文重写问题,更利于检索

  • 工具:LlamaIndex 的 QueryTransform / LangChain ReAct Agent

from llama_index.query_engine.transform_query_engine import HyDEQueryTransform
query_engine = HyDEQueryTransform(...)

✅ Multi-Query Retrieval

  • 用多个查询同时发起检索(再聚合 Top-k)

  • 示例(LangChain):

retriever = MultiQueryRetriever.from_llm(
    retriever=base_vector_retriever,
    llm=ChatOpenAI(),
)

🔹 4. 重排序(Re-ranking)

✅ Reranker 模型

  • 用一个 Cross-Encoder 对 Top-K 检索结果打分

  • 模型推荐:

    • BAAI/bge-reranker-base

    • nq-distilbert-base-v2

  • 工具支持:

    • rerank=True in LlamaIndex

    • Haystack ReRanker Pipeline

reranker = ReRanker(model="BAAI/bge-reranker-base", top_n=5)

 

🔹 5. 检索流程优化(系统级)

✅ Two-stage 检索

  • 第一阶段:快速粗检索(向量 Top-30)

  • 第二阶段:Re-rank or 再召回 Top-5

✅ Tool-based 检索

  • 通过 ReAct / Agent 调用不同的检索源

  • 示例:网页 + PDF + SQL + API 混合问答

✅ LangGraph + DSPy 任务流程优化

  • 通过节点化流程调度检索、问答、验证逻辑

  • 避免 LLM 一步出错带来的全局误差


🚀 实战推荐组合(易用 + 高性能)

组合策略效果评价工具示例
向量检索 + reranker🚀🚀🚀🚀FAISS + BGE-reranker
Hybrid 检索 + reranker🚀🚀🚀🚀🚀BM25 + Dense + Re-ranking
多查询 + 向量检索🚀🚀🚀LangChain MultiQueryRetriever
Query Rewrite + reranker🚀🚀🚀🚀LlamaIndex + HyDE + bge-reranker


🧪 Bonus:召回效果评估指标(RAGAS)

  • Precision@k:前 k 条中相关的比例

  • Recall@k:召回所有相关信息的能力

  • Faithfulness / Factuality:最终生成是否忠实于检索内容

RAGAS 工具可评估你自己的召回链条效果。

《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
### RAG模型性能评估 #### 评估指标体系 为了全面衡量RAG系统的效能,一系列精心设计的评价标准被确立。这些指标不仅涵盖了传统自然语言处理任务中的常见测量维度,还特别针对检索模块和生成模块的特点进行了定制化考量[^1]。 #### 检索组件评估 对于检索部分而言,主要关注的是其能否高效精准地定位到与查询高度匹配的知识片段。常用的评测参数包括但不限于召回率(Recall)、精确度(Precision)、F1分数以及平均倒数排名(MRR)。其中,召回率反映了系统覆盖所有相关文档的能力;而精确度则体现了所选文档中有多少确实是相关的;F1得分综合考虑了前两者之间的平衡关系;至于MRR,则侧重于考察首次命中正确答案的位置分布情况。 #### 生成组件评估 当涉及到生成环节时,除了沿用BLEU、ROUGE等通用文本相似度量外,还会引入更多面向对话质量的新颖测度。例如连贯性评分用来检验回复语句间的逻辑关联程度;多样性指数旨在鼓励产出具有创意性的表达方式而非千篇一律的标准答案;此外还有专门针对事实准确性设立的人工审核机制——通过邀请领域专家参与打分来确保最终输出内容的真实性可靠。 ```python def evaluate_rag_system(retrieved_docs, generated_text): retrieval_metrics = calculate_retrieval_quality(retrieved_docs) generation_metrics = assess_generation_effectiveness(generated_text) overall_performance = combine_scores(retrieval_metrics, generation_metrics) return overall_performance def calculate_retrieval_quality(docs): recall = compute_recall(docs) precision = compute_precision(docs) f1_score = harmonic_mean(recall, precision) mrr = mean_reciprocal_rank(docs) metrics = { 'recall': recall, 'precision': precision, 'f1_score': f1_score, 'mrr': mrr } return metrics def assess_generation_effectiveness(text): bleu_score = get_bleu_score(text) rouge_score = obtain_rouge_measurements(text) coherence_rating = rate_coherence_of_response(text) diversity_index = measure_diversity_in_output(text) factual_accuracy = review_facts_by_experts(text) scores = { 'bleu': bleu_score, 'rouge': rouge_score, 'coherence': coherence_rating, 'diversity': diversity_index, 'accuracy': factual_accuracy } return scores ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值