深度学习——感知器

import numpy as np

a = 0.001
w0 = 0.6
w1 = 0.6

x1 = np.array([0,0,1,1])
x2 = np.array([0,1,0,1])
t = np.array([0,0,0,1])
y = np.array([0,1,1,1])
def mysum(x1,x2):
    sum = w0 * x1 + w1 * x2
    return sum

def activity():
    if (mysum(x1,x2) > 0):
        return 1
    else:
        return 0


for i in range(1000):     # 迭代循环1000次
    w0 = w0 - (mysum(x1[i % 4], x2[i % 4]) - t[i % 4]) * x1[i % 4] * a
    w1 = w1 - (mysum(x1[i % 4], x2[i % 4]) - t[i % 4]) * x2[i % 4] * a
    g0 = mysum(x1[i % 4], x2[i % 4]) - t[i % 4]
    g1 = (mysum(x1[i % 4], x2[i % 4]) - t[i % 4]) * x1[i % 4]
    g2 = (mysum(x1[i % 4], x2[i % 4]) - t[i % 4]) * x2[i % 4]
    avg = (abs(g0) + abs(g1) + abs(g2)) * 1/3
    while abs(g0) < a and abs(g1) < a and abs(g2) < a :
        print(g0, g1, g2) # 输出最终的梯度g0,g1,g2
        print('平均误差为:' + str(avg))
        break













 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值