如何理解LSTM

文章讨论了在词嵌入和LSTM模型中,输入数据的大小(input_size)如何影响模型的构建。输入数据经过词嵌入后变为词向量,其长度(emb_size)即为输入尺寸。隐藏层(hidden_size)决定了网络内部处理信息的复杂度,且与输出向量维度相同。对于序列数据,LSTM处理的是每个时间步的特征,这些特征的长度等于词嵌入的维度。文章强调了这些参数在深度学习自然语言处理中的重要性。
摘要由CSDN通过智能技术生成

input_size:输入的x0的值,或者说输入数据的大小,词嵌入中输入的每个单词向量的长度embed_Size

hidden_size: 隐藏层的大小,隐藏层节点的数量,隐藏层神经元的数量,和输出向量维度相同

num_layers: lstm的层数

对于一个长度为sequence_length的句子,进行词嵌入以后的矩阵为seq_len * emb_size。当导入进LSTM后,emb_size 就变成了input_size。

每个单词的特征长度(feature_len)= 词嵌入维度(emb_size)= 输入数据(input_size)

 

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值