input_size:输入的x0的值,或者说输入数据的大小,词嵌入中输入的每个单词向量的长度embed_Size
hidden_size: 隐藏层的大小,隐藏层节点的数量,隐藏层神经元的数量,和输出向量维度相同
num_layers: lstm的层数
对于一个长度为sequence_length的句子,进行词嵌入以后的矩阵为seq_len * emb_size。当导入进LSTM后,emb_size 就变成了input_size。
每个单词的特征长度(feature_len)= 词嵌入维度(emb_size)= 输入数据(input_size)