一篇文章学会二分类评估器---混淆矩阵

在这里插入图片描述

我们模型应该从对角线上看

我们举一个例子,帮助理解混淆矩阵,在真实标签中,如果我们生病了,我们就是1,如果我们没生病就是0

TP:我们真的病了,然而模型也预测出来我们生病了(俩都是真病了)

FN:我们真的病了,然后模型却没有预测出来我们生病了(真病,模没病)

FP:我们没有生病,然后模型却预测出来我们生病了(真没病,模有病)

TN:我们没有生病,然后模型也没有预测出来我们生病(俩都没病)

1.混淆矩阵的行代表的是实际的类别,列代表预测的类别,里面的数值代表的是所有的实例预测准确和不准确出现次数的总和。

所以模型预测错误就有两种情况:假负和假正。对于不同的场景,我们对模型的要求也不同。

  • 对于诊断疾病的模型,**假负(把病人诊断为健康,会错过最佳治疗时间)**比假正情况更严重,所以该模型应该更倾向于找出所有为positive的样本(患病的就诊者);
  • 对于垃圾邮件检测模型,**假正(把正常邮件检测为垃圾邮件,会错过重要邮件)**比假负情况更严重,所以该模型应该更倾向于选出所有为negative的样本(正常邮件)。

须知

1.一个完美的分类器只有真正类和真负类,所以它的混淆矩阵只有对象线上面有值,其他的为0(也就是其他的两类上面全是0)

2.咱们学习混淆矩阵的目的是用来**"评估分类器"性能如何的**

2.根据混淆矩阵推出来的比较好的指标

  1. 精度
  2. 召回率
  3. 精度与召回率权衡
  4. ROC曲线

1.精度

1.是什么

正类预测的准确率,也称为分类器的精度,说白了就是**“我们预测结果为正类(包括真正类和假正类),预测结果为正类中真实结果也为正类(真正类)的占比”**

2.公式

精度 = T P / ( T P + F P ) 精度 = TP / (TP + FP) 精度=TP/(TP+FP)

TP:是真正类的数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值