数学建模之决策树与随机森林

一、决策树

优点

  1. 计算复杂度不高

  1. 输出结果易于理解

  1. 对中间缺失值不敏感

  1. 可以处理不相关数据

缺点

非常容易过拟合

重点:

特征选择决策树生成

1.特征选择

信息熵

信息增益

信息增益率

基尼指数

2.生成算法

对应ID3:没有剪枝,当某一属性样本分布过于分散,如ID,则对结果造成影响非常大。

划分标准

特征类型

特征数量

使用场景

缺失值

ID3

信息增益

离散

分类

敏感

C4.5

信息增益率

离散或者连续

分类

可以处理

CART

基尼指数

离散或者连续

较多

分类或者回归

可以处理

二、随机森林

是一种集成学习,通过建立几个模型的组合来解决单一预测问题。工作原理是生成多个分类器,各自独立地学习和作出预测,这些预测最后结合成单预测。随机森林是集成学习地一个子类,通过决策树的投票来决定最终分类结果

1.基础知识

应用问题

  1. 对离散值的分类

  1. 对连续值得回归

  1. 无监督学习聚类

  1. 异常点检测

优点

  1. 准确率高

  1. 能够有效运行在大数据集上

  1. 有效处理高维样本,无需降维

  1. 有效评估各个特征在分类问题的重要性

  1. 能够获取内部误差的无偏估计

  1. 对缺省值问题能够获取很好的结果

缺点

  1. 在噪音较大的数据或者回归问题过拟合

  1. 如果取值划分较多,则属性权值是不可信的

自举汇聚法

2.构建步骤

3.在特征值筛选方面的应用

随机森林是一种集成学习方法,主要用于分类、回归以及其他机器学习任务中。它由多个决策树组成,每个决策树都独立地学习并作出预测,最终的结果是通过组合这些决策树的预测来得出的。 在研究生的数学建模课程中,随机森林预测理论通常会包括以下几个核心概念: 1. 决策树随机森林的基础是决策树,它是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最终每个叶节点代表一种分类结果或预测值。 2. 集成学习:随机森林是一种集成学习技术,它构建并结合多个决策树来提高预测的准确性和稳定性。集成学习的基本思想是通过组合多个学习器来提升整体性能,减少过拟合的风险。 3. 随机性:在构建每棵决策树时,随机森林算法引入了随机性。具体来说,它不仅随机选择一部分训练样本(称为袋外数据,out-of-bag,简称OOB),用于评估单个树的性能;同时在每个节点的分裂过程中,也只考虑随机选择的一部分特征来确定最佳的分割方式。 4. 预测过程:当使用随机森林进行预测时,每棵树都会给出一个预测结果,随机森林通过投票机制(分类问题)或平均机制(回归问题)来决定最终的预测结果。 5. 特征重要性评估:随机森林还提供了一种评估输入特征重要性的方法。通常通过计算减少每个特征不纯度的平均值和标准差来评估特征的重要性。 6. 模型参数:随机森林算法中有一些重要的参数需要调整,比如树的数量、每个节点分裂的特征数量、树的深度等。这些参数的选择将影响模型的预测能力和过拟合的风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值