数学建模之决策树与随机森林

一、决策树

优点

  1. 计算复杂度不高

  1. 输出结果易于理解

  1. 对中间缺失值不敏感

  1. 可以处理不相关数据

缺点

非常容易过拟合

重点:

特征选择决策树生成

1.特征选择

信息熵

信息增益

信息增益率

基尼指数

2.生成算法

对应ID3:没有剪枝,当某一属性样本分布过于分散,如ID,则对结果造成影响非常大。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值