函数与极限
1.函数
1.1 定义
1.2函数的特性
//有界性
//单调性
//奇偶性
-
偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。
-
奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。
//周期性
一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:
其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。
示例
-
函数 f(x)=sin(x):在实数范围内,sin(x)是周期函数,其周期为 2π,因为对于任意 x,都有 sin(x+2π)=sin(x)。
-
函数 g(x)=cos(x):在实数范围内,cos(x)是周期函数,其周期为 2π,因为对于任意 x,都有 cos(x+2π)=cos(x)。
注:函数的连续性和可导性后续介绍。
1.3 反函数
2.极限
2.1 数列极限
-
唯一性:如果数列 {an}收敛,则其极限是唯一的。
-
有界性:如果数列 {an}收敛,则它是有界的。
-
保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则
-
四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。
极限的判定 1. 直接法
夹逼定理:
-
如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且
2.2 函数的极限
性质
-
唯一性:如果极限存在,那么它是唯一的。
-
局部有界性:如果
,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即
-
局部保号性:如果
且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。
极限的计算
-
代入法:如果 f(x) 在 x=a 处连续,则
-
极限运算法则:如果
和
,则
-
-
夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
,则
单侧极限
-
左极限:如果
,则称 L 为 f(x) 在 x 趋近于 a 时的左极限。
-
右极限:如果
,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。
如果极限
存在,则左极限和右极限都存在且相等。
2.3 无穷大与无穷小
-
无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作
无穷大分为正无穷大和负无穷大。
无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;
无穷大乘无穷大肯定为无穷大。
-
无穷小:如果
,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。
运算法则:
1.无穷小加、减、乘无穷小都是无穷小
2.有界函数与无穷小的乘积也为无穷小
3.常数与无穷小的乘积也为无穷小
4.无穷小除以无穷小不确定。
注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别。
负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。
如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。
2.4 无穷大极限
函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。
具体分类:
-
当 x→+∞ 时的极限:
-
如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作
-
-
当 x→−∞时的极限:
-
如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作
-
例子:
-
当 x→+∞ 时的极限:
-
例如,
当 x→−∞ 时的极限:
-
例如,
-
-
当 x→∞或 x→−∞时的极限:
-
例如,
-
2.5 极限存在准则
2.5.1 单调有界准则
如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。
洛必达法则:
假设 f(x) 和 g(x) 是两个函数,并且在某个点 a 的某个去心邻域内可导(即 f′(x)和 g′(x)存在),并且 g′(x)≠0在这个去心邻域内。如果:
-
,或者
-
,
那么:
如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。
2.5.2 夹逼定理
如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且
,则
例子
当x→0时,
可以使用夹逼定理证明:
根据下图可知:在单位圆上,当x趋近于0时,假设x 是从原点到角度 x 的弧长,而 sin(x)是从原点到角度 x的弦长,tan(x) 是从原点到角度 xx 的切线长度,从而:
sinx <x< tanx,同除以sinx,
分子分母取倒数,
由于
所以根据夹逼定理,
3.函数的连续性
3.1 连续性
在某点的连续性:
设函数 f(x)在点 x=a的某个邻域内有定义。
如果
,则称函数 f(x) 在点 x=a 处连续。
归纳起来:
左连续:
设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。
如果
,则称函数 f(x) 在点 x=a处左连续。
右连续:
设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。
如果
,则称函数 f(x)在点 x=a 处右连续。
连续的充要条件
函数连续的充要条件:函数左右连续。
在区间的连续性:
如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。
如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续。
例子 1:
函数
在 x=0处不连续。
计算极限:
由于
不存在,函数在 x=0处不连续。
3.2 不连续点
定义
3.3 闭区间连续函数性质
零点定理:(后边会用)
设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。
介值定理:(后边会用)
设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min(f(a),f(b))<k<max(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。
零点定理与介值定理的关系:
零点定理是介值定理的特例:
-
零点定理可以看作是介值定理在 k=0时的特例。
-
如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。
导数
1.概念
1.1 导数定义
1.2 单侧导数
1.2.1 左导数
函数 f(x)在点 x=a 处的左导数定义为:
其中 h→0−表示 h 从负方向趋近于 0。
1.2.2 右导数
函数 f(x)在点 x=a处的右导数定义为:
其中 h→0+表示 h 从正方向趋近于 0。
1.2.3 导数的存在性
函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:
2.导数的几何意义
2.1 切线
2.2 法线
3.可导与连续的关系
3.1 定义
连续性
一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:
这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。
可导性
一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:
这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。
所以从连续和可导定义看出,可导的条件比连续的条件更严格。
3.2 定理
1.可导性蕴含连续性
2.连续性不一定蕴含可导性
4.求导公式
4.1 求导规则
-
常数规则:
其中 c 是常数。
-
幂函数规则:
其中 n 是任意实数。
-
常数倍规则:
$$
$$
其中 c 是常数。
-
和差规则:
$$
$$
-
乘积规则:
$$
$$
-
商规则:
$$
\dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}}
$$其中 g(x)≠0。
-
链式法则(复合函数求导):
$$
\dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}
$$
4.2 常见函数的求导公式
-
指数函数:
$$
\dfrac{d}{dx}(e^{x})=e^{x}
$$$$
\dfrac{d}{dx}(a^{x})=a^{x}ln(a)
$$
其中 a>0且 a≠1。
-
对数函数:
$$
\dfrac{d}{dx}(lnx)=\dfrac{1}{x}
$$$$
\dfrac{d}{dx}(log_{a}(x))=\dfrac{1}{xln(a)}
$$
其中 a>0且 a≠1。
-
三角函数:
$$
\dfrac{d}{dx}(sin(x))=cos(x)
$$$$
\dfrac{d}{dx}(cos(x))=−sin(x)
$$$$
\dfrac{d}{dx}(tan(x))=sec^{2}(x)=\dfrac{1}{cos^{2}(x)}
$$ -
反三角函数:
$$
\dfrac{d}{dx}(arcsin(x))=\dfrac{1}{\sqrt{1-x^{2}}}
$$$$
\dfrac{d}{dx}(arccos(x))=−\dfrac{1}{\sqrt{1-x^{2}}}
$$$$
\dfrac{d}{dx}(arctan(x))=\dfrac{1}{1+x^{2}}
$$
5.高阶导数
高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作
$$
f''(x) 或 \dfrac{d^{2}y}{dx^{2}}
$$
。类似地,三阶导数是对二阶导数再求导,记作
$$
f'''(x)或 \dfrac{d^{3}y}{dx^{3}}
$$
,以此类推。
定义
对于一个函数 f(x),其 n 阶导数定义为:
$$
f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}}
$$
其中 n是正整数。
高阶导数的符号表示
-
一阶导数:
$$
f′(x)或 \dfrac{dy}{dx}
$$ -
二阶导数:
$$
f''(x) 或 \dfrac{d^{2}y}{dx^{2}}
$$ -
三阶导数:
$$
f'''(x) 或 \dfrac{d^{3}y}{dx^{3}}
$$ -
n 阶导数:
$$
f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}}
$$
例子
1.求
$$
f(x)=x^{3}
$$
的高阶导数
解:
一阶导数:
$$
f′(x)=\dfrac{dx^{3}}{dx}=3x^{2}
$$
二阶导数:
$$
f''(x)=\dfrac{d^{2}x^{3}}{dx^{2}}=\dfrac{d}{dx}(3x^{2})=6x
$$
三阶导数:
$$
f'''(x) 或 \dfrac{d^{3}x^{3}}{dx^{3}}=\dfrac{d}{dx}(6x)=6
$$
四阶导数:
$$
f^{(4)}(x)=\dfrac{d^{4}x^{3}}{dx^{n}}\dfrac{d}{dx}(6)=0
$$
2.求 f(x)=sin(x) 的高阶导数
解:
一阶导数:
$$
f′(x)=\dfrac{dsinx}{dx}=cosx
$$
二阶导数:
$$
f''(x)=\dfrac{d^{2}sinx}{dx^{2}}=\dfrac{d}{dx}(cosx)=-sinx
$$
三阶导数:
$$
f'''(x) 或 \dfrac{d^{3}sinx}{dx^{3}}=\dfrac{d}{dx}(-sinx)=-cosx
$$
四阶导数:
$$
f^{(4)}(x)=\dfrac{d^{4}sinx}{dx^{n}}\dfrac{d}{dx}(-cosx)=sinx
$$
6.隐函数求导
隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出
$$
\dfrac{dy}{dx}
$$
隐函数求导的基本步骤
-
对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。
-
使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数。
-
通过求导得到的方程,解出 dy/dx。
7.参数方程求导
参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:
$$
\begin{cases}x=f(t)\\ y=g(t)\end{cases}
$$
其中 t 是参数。我们希望求出曲线的导数 dy/dx。
参数方程求导的基本步骤
-
求 x 对 t 的导数:
$$
\dfrac{dx}{dt}=f′(t)
$$ -
求 y对 t 的导数:
$$
\dfrac{dy}{dt}=g′(t)
$$ -
求 dy/dx:
$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g′(t)}{f′(t)}
$$
例子
1.求
$$
\begin{cases}x=t^{2}\\ y=t^{3}\end{cases}
$$
的导数
解:
1.求 x 对 t 的导数:
$$
\dfrac{dx}{dt}=\dfrac{d}{dt}(t^{2})=2t
$$
2.求 y 对 t 的导数:
$$
\dfrac{dy}{dt}=\dfrac{d}{dt}(t^{3})=3t^{2}
$$
3.求dy/dx
$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3t^{2}}{2t}=\dfrac{3}{2}t
$$
2.求
$$
\begin{cases}x=cost\\ y=sint\end{cases}
$$
的导数
解:
1.求 x 对 t 的导数:
$$
\dfrac{dx}{dt}=\dfrac{d}{dt}(cost)=-sint
$$
2.求 y 对 t 的导数:
$$
\dfrac{dy}{dt}=\dfrac{d}{dt}(sint)=cost
$$
3.求dy/dx
$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{cost}{-sint}=-cot(t)
$$
微分
1.定义
微分dy可以近似地表示为
$$
dy=f'(a)△x或dy=f'(a)dx
$$
注意:△y是精确值,dy是近似值。
2.可微的充要条件
函数 f(x) 在点 x=a 处可微的充要条件是:
-
函数在点 x=a处连续:
$$
\lim _{x\rightarrow a}f(x)=f(a)
$$ -
函数在点 x=a 处左右导数存在且相等:
$$
f'_{-}(a)=f'_{+}(a)
$$
简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。
3.微分公式与法则
4.微分的几何意义
5.微分中值定理
5.1 罗尔定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在区间端点的函数值相等,即 f(a)=f(b)。
那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0
罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。
5.2 拉格朗日中值定理
如果函数 f(x)满足以下条件:
-
在闭区间 [a,b] 上连续。
-
在开区间 (a,b)上可导。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
$$
f′(c)=\dfrac{f(b)−f(a)}{b−a}
$$
拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。
罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。
5.3 柯西中值定理
如果函数 f(x) 和 g(x) 满足以下条件:
-
在闭区间 [a,b]上连续。
-
在开区间 (a,b)上可导。
-
在开区间 (a,b) 内,g′(x)≠0。
那么,在开区间 (a,b) 内至少存在一点 c,使得:
$$
\dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)}
$$
柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。
5.4 洛必达法则
洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。
设函数 f(x)和 g(x 满足以下条件:
-
在点 a 的某个去心邻域内可导,且 g′(x)≠0。
-
$$
\lim _{x\rightarrow a}f(x)=0 且 \lim _{x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。
$$
如果
$$
\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$
存在(或为无穷大),那么:
$$
\lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$
6.函数的单调性
函数的单调性可以通过其导数来判定:
-
递增函数: 如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。
-
递减函数: 如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。
7.函数的凹凸性
7.1 函数凹凸性判定
函数的凹凸性可以通过其二阶导数来判定:
-
凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。
-
凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。
7.2 拐点
拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。
8.极值
极值
是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。
如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。
最值
最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。
如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。
8.1 极值的充分必要条件
必要条件
如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。
充分条件
一阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。
二阶导数判定法
-
局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。
-
局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。
不定积分
1.定义
如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分
$$
\int f(x) dx
$$
表示 f(x) 的所有原函数,通常写成:
$$
\int f(x) dx=F(x)+C
$$
其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。
不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。
2.基本积分公式
-
常数积分:
$$
∫k dx=kx+C(其中 k 是常数)
$$ -
幂函数积分:
$$
∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1)
$$ -
指数函数积分:
$$
∫e^{x} dx=e^{x}+C
$$$$
∫a^{x} dx=\dfrac{a^{x}}{lna}+C(其中 a>0 且 a≠1)
$$ -
对数函数积分:
$$
∫\dfrac{1}{x} dx=ln∣x∣+C
$$ -
三角函数积分:
$$
∫sinx dx=−cosx+C
$$$$
∫cosx dx=sinx+C
$$ -
反三角函数积分:
$$
∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsinx+C
$$$$
∫\dfrac{1}{1+x^{2}} dx=arctanx+C
$$
3.换元积分法
3.1 第一类换元积分法
-
选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。
-
求导数: 求 u 对 x 的导数
$$
\dfrac{du}{dx}=g′(x)
$$,并将其改写为
$$
du=g′(x) dx
$$ -
替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为
$$
\dfrac{du}{g′(x)}
$$ -
求解新积分: 求解新的积分
$$
∫f(u) du
$$ -
回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。
简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。
3.2 第二类换元积分法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。
-
选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。
-
求导数: 求 x 对 t 的导数
$$
\dfrac{dx}{dt}=g′(t)
$$,并将其改写为
$$
dx=g′(t) dt
$$ -
替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。
-
求解新积分: 求解新的积分
$$
∫f(g(t))g′(t) dt
$$ -
回代变量: 将 t 回代为
$$
g^{−1}(x)
$$,得到最终的不定积分结果。
简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。