10.8高数

函数与极限

1.函数

1.1 定义

1.2函数的特性

//有界性

//单调性

//奇偶性

  • 偶函数:如果对于定义域中的任意 x,都有 f(−x)=f(x),则函数 f 是偶函数。偶函数的图形关于 y 轴对称。

  • 奇函数:如果对于定义域中的任意 x,都有 f(−x)=−f(x),则函数 f是奇函数。奇函数的图形关于原点对称。

//周期性

一个函数 f(x) 在其定义域 D 上称为周期函数,如果存在一个正数 T,使得对于定义域中的任意 x,都有:


f(x+T)=f(x)

其中 T称为函数的周期。如果存在最小的正数 T 满足上述条件,则称 T 为函数的最小正周期。

示例

  • 函数 f(x)=sin⁡(x):在实数范围内,sin⁡(x)是周期函数,其周期为 2π,因为对于任意 x,都有 sin⁡(x+2π)=sin⁡(x)。

  • 函数 g(x)=cos⁡(x):在实数范围内,cos⁡(x)是周期函数,其周期为 2π,因为对于任意 x,都有 cos⁡(x+2π)=cos⁡(x)。

注:函数的连续性和可导性后续介绍。

1.3 反函数

2.极限

2.1 数列极限

  1. 唯一性:如果数列 {an}收敛,则其极限是唯一的。

  2. 有界性:如果数列 {an}收敛,则它是有界的。

  3. 保序性:如果数列 {an} 和 {bn} 都收敛,且对于所有 n,都有 an≤bn,则

    \lim _{n\rightarrow \infty }a_{n}\leq \lim _{n\rightarrow \infty }b_{n}

  4. 四则运算:如果数列 {an}和 {bn} 都收敛,则它们的和、差、积、商(分母不为零)的极限也存在,并且满足相应的极限运算法则。

极限的判定 1. 直接法 

\lim _{n\rightarrow \infty }\dfrac{n^{2}+1}{2n^{2}+3}=\lim _{n\rightarrow \infty }\dfrac{1+\dfrac{1}{n^{2}}}{2+\dfrac{3}{n^2}}=\dfrac{1}{2}

夹逼定理

  • 如果数列 {an}、{bn} 和 {cn} 满足 an≤bn≤cn,且

\lim _{n\rightarrow \infty }a_{n}= \lim _{n\rightarrow \infty }c_{n}=L

\lim _{n\rightarrow \infty }b_{n}=L

2.2 函数的极限

\lim _{x\rightarrow a }f(x)=L

性质

  1. 唯一性:如果极限存在,那么它是唯一的。

  2. 局部有界性:如果


    \lim _{x\rightarrow a }f(x)=L

     

    ,则存在M>0, δ>0,使得 f(x) 在 0<∣x−a∣<δ内有界,即


    |f(x)|\leq M
     

  3. 局部保号性:如果


    \lim _{x\rightarrow a }f(x)=L
     

     

    且 L>0(或 L<0),则存在 δ>0,使得 f(x)>0(或 f(x)<0)在 0<∣x−a∣<δ内成立。

极限的计算

  1. 代入法:如果 f(x) 在 x=a 处连续,则


    \lim _{x\rightarrow a }f(x)=f(a)

  2. 极限运算法则:如果


    \lim _{x\rightarrow a }f(x)=L
     


    \lim _{x\rightarrow a }g(x)=M
     

    ,则


    • \lim _{x\rightarrow a }[f(x) \pm g(x)] =L\pm M
       


    • \lim _{x\rightarrow a }[f(x) \cdot g(x)] =L\cdot M
       


    • \lim _{x\rightarrow a }\dfrac{f(x)}{g(x)} =\dfrac{L}{M}
       

  3. 夹逼定理:如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且


    \lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L

    ,则


    \lim _{x\rightarrow a }g(x)=L
     

单侧极限

  1. 左极限:如果


    \lim _{x\rightarrow a^{-}}f(x)=L
     

    ,则称 L 为 f(x) 在 x 趋近于 a 时的左极限。

  2. 右极限:如果


    \lim _{x\rightarrow a^{+}}f(x)=L

     

    ,则称 L 为 f(x) 在 x 趋近于 a 时的右极限。

如果极限


\lim _{x\rightarrow a }f(x)

存在,则左极限和右极限都存在且相等

2.3 无穷大与无穷小

  1. 无穷大:如果对于任意大的正数 M,总存在正数 δ,使得当 0<∣x−a∣<δ时,有 ∣f(x)∣>M,则称 f(x)在 x 趋近于 a 时趋向于无穷大,记作


    \lim _{x\rightarrow a }f(x)=\infty

     

    无穷大分为正无穷大和负无穷大。

    无穷大加无穷大不确定,因为如果负无穷大加正无穷大不知道为多少;同理无穷大减无穷大也不确定;无穷大除以无穷大也不确定;

    无穷大乘无穷大肯定为无穷大。

  2. 无穷小:如果


    \lim _{x\rightarrow a }f(x)=0或\lim _{x\rightarrow \infty }f(x)=0

     

    ,则称 f(x)在 x 趋近于a或趋近于∞ 时的无穷小。

    运算法则:

    1.无穷小加、减、乘无穷小都是无穷小

    2.有界函数与无穷小的乘积也为无穷小

    3.常数与无穷小的乘积也为无穷小

    4.无穷小除以无穷小不确定。

    注意:无穷小和负无穷大的区别及无穷小和非常小的数的区别

    负无穷大也是无穷大,不是无穷小;非常小的数是一个常数,不是无穷小。

如果f(x)是无穷大,则1/f(x)为无穷小;如果f(x)是无穷小,则1/f(x)为无穷大。

2.4 无穷大极限

函数 f(x) 当 x趋于无穷大时,如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 ∣x∣>X 时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x 趋于无穷大时的极限是 A。

具体分类:

  1. 当 x→+∞ 时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x>X时, ∣f(x)−A∣<ϵ,则我们说 f(x)当 x→+∞ 时的极限是 A,记作


      \lim _{x\rightarrow +\infty }f(x)=A

  2. 当 x→−∞时的极限:

    • 如果存在一个常数 A,使得对于任意小的正数 ϵ,总存在一个正数 X,使得当 x<−X时, ∣f(x)−A∣<ϵ,则我们说 f(x) 当 x→−∞时的极限是 A,记作

                  \lim _{x\rightarrow -\infty }f(x)=A

例子:

  1. 当 x→+∞ 时的极限:

    • 例如,

    \lim _{x\rightarrow +\infty }\dfrac{1}{x}=0

    当 x→−∞ 时的极限:

    • 例如,


      \lim _{x\rightarrow -\infty }e^{x}=0

  2. 当 x→∞或 x→−∞时的极限:

    • 例如,


      \lim _{x\rightarrow +\infty }\dfrac{sinx}{x}=0和\lim _{x\rightarrow -\infty }\dfrac{sinx}{x}=0

2.5 极限存在准则

2.5.1 单调有界准则

如果函数 f(x)在某个区间上单调递增且有上界,或者单调递减且有下界,那么该函数在该区间上必定有极限。

洛必达法则:

假设 f(x) 和 g(x) 是两个函数,并且在某个点 a 的某个去心邻域内可导(即 f′(x)和 g′(x)存在),并且 g′(x)≠0在这个去心邻域内。如果:


  1. \lim _{⁡x→a}f(x)=0 且 \lim⁡ _{x→a}g(x)=0

     

    ,或者

  2. \lim⁡ _{x→a}f(x)=±∞ 且 \lim⁡ _{x→a}g(x)=±∞

那么:


\lim⁡ _{x→a}\dfrac{f(x)}{g(x)}=\lim⁡ _{x→a}\dfrac{f′(x)}{g′(x)}

如果右边的极限存在(或为无穷大),则左边的极限也存在(或为无穷大)。

2.5.2 夹逼定理

如果 f(x)≤g(x)≤h(x) 在 x=a 的某个去心邻域内成立,且


\lim _{x\rightarrow a }f(x)=\lim _{x\rightarrow a }h(x)=L
 

,则


\lim _{x\rightarrow a }g(x)=L
 

例子

当x→0时,


\lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1

可以使用夹逼定理证明:

根据下图可知:在单位圆上,当x趋近于0时,假设x 是从原点到角度 x 的弧长,而 sin⁡(x)是从原点到角度 x的弦长,tan(x) 是从原点到角度 xx 的切线长度,从而:

sinx <x< tanx,同除以sinx,


1<\dfrac{x}{sinx}<\dfrac{tanx}{sinx}=\dfrac{1}{cosx}

分子分母取倒数,
cosx<\dfrac{sinx}{x}<1

由于


\lim _{x\rightarrow 0 }cosx=1,\lim _{x\rightarrow 0 }1=1

所以根据夹逼定理,


\lim _{x\rightarrow 0 }\dfrac{sinx}{x}=1

3.函数的连续性

3.1 连续性

在某点的连续性:

设函数 f(x)在点 x=a的某个邻域内有定义。

如果
\lim _{x\rightarrow a }f(x)=f(a)

,则称函数 f(x) 在点 x=a 处连续。

归纳起来:


\begin{cases}1.在a处函数有极限\\2.在a处函数有定义\\3.在a处极限等于函数值\end{cases}

左连续

设函数 f(x) 在点 x=a 的左侧有定义(即存在一个 δ>0,使得 (a−δ,a)内的所有 x 都有定义)。

如果
\lim _{x\rightarrow a^{-} }f(x)=f(a)

,则称函数 f(x) 在点 x=a处左连续。

右连续

设函数 f(x) 在点 x=a 的右侧有定义(即存在一个 δ>0,使得 (a,a+δ)内的所有 x 都有定义)。

如果
\lim _{x\rightarrow a^{+} }f(x)=f(a)

,则称函数 f(x)在点 x=a 处右连续。

连续的充要条件

函数连续的充要条件:函数左右连续。

在区间的连续性

如果函数 f(x) 在区间 (a,b) 内的每一点都连续,则称函数 f(x)在区间 (a,b) 内连续。

如果函数 f(x) 在区间 [a,b] 内的每一点都连续,并且在左端点 x=a 处右连续,在右端点 x=b 处左连续,则称函数 f(x) 在区间 [a,b] 上连续。

例子 1:

函数
f(x)=\dfrac{1}{x}

在 x=0处不连续。

计算极限:
\lim _{x\rightarrow 0^{+} }\dfrac{1}{x}=+\infty

\lim _{x\rightarrow 0^{-} }\dfrac{1}{x}=-\infty

由于
\lim _{x\rightarrow 0 }f(x)

不存在,函数在 x=0处不连续。

3.2 不连续点

定义


\begin{cases}1.在a处函数极限不存在\\2.在a处函数无定义\\3.在a处极限不等于函数值\end{cases}

3.3 闭区间连续函数性质

零点定理:(后边会用)

设函数 f(x) 在闭区间 [a,b]上连续,并且 f(a) 和 f(b) 异号(即 f(a)⋅f(b)<0),则存在 c∈(a,b) 使得 f(c)=0。

介值定理:(后边会用)

设函数 f(x) 在闭区间 [a,b] 上连续,并且 f(a)≠f(b)。对于任意介于 f(a)和 f(b)之间的数 k(即 min⁡(f(a),f(b))<k<max⁡(f(a),f(b))),存在 c∈(a,b) 使得 f(c)=k。

零点定理与介值定理的关系

零点定理是介值定理的特例:

  • 零点定理可以看作是介值定理在 k=0时的特例。

  • 如果 f(a)和 f(b)异号,则 0 介于 f(a) 和 f(b)之间,因此存在 c∈(a,b) 使得 f(c)=0。

导数

1.概念

1.1 导数定义

1.2 单侧导数

1.2.1 左导数

函数 f(x)在点 x=a 处的左导数定义为:


f_{-}'(a)=\lim _{h\rightarrow 0^{-}}\dfrac{f(a+h)-f(a)}{h}
 

其中 h→0−表示 h 从负方向趋近于 0。

1.2.2 右导数

函数 f(x)在点 x=a处的右导数定义为:


f_{+}'(a)=\lim _{h\rightarrow 0^{+}}\dfrac{f(a+h)-f(a)}{h}
 

其中 h→0+表示 h 从正方向趋近于 0。

1.2.3 导数的存在性

函数 f(x) 在点 x=a 处的导数 f′(a)存在,当且仅当左导数和右导数都存在且相等:


f'(a)=f_{−}'(a)=f_{+}'(a)

2.导数的几何意义

2.1 切线

2.2 法线

3.可导与连续的关系

3.1 定义

连续性

一个函数 f(x) 在点 x=a 处连续,如果满足以下条件:


\lim _{x\rightarrow a}f(x)=f(a)或者\lim _{h\rightarrow 0}f(a+h)-f(a)=0

这意味着当 x 接近 a 时,函数值 f(x)也接近 f(a)。换句话说,函数在点 x=a处没有跳跃或断裂。

可导性

一个函数 f(x) 在点 x=a处可导,如果它在该点处的导数存在,即:


f'(a)=\lim _{h\rightarrow 0}\dfrac{f(a+h)−f(a)}{h}

这意味着函数在点 x=a 处的变化率是有限的,并且有一个确定的值。

所以从连续和可导定义看出,可导的条件比连续的条件更严格。

3.2 定理

1.可导性蕴含连续性

2.连续性不一定蕴含可导性

4.求导公式

4.1 求导规则

  1. 常数规则


    \dfrac{d}{dx}(c)=0
     

     

    其中 c 是常数。

  2. 幂函数规则


    \dfrac{d}{dx}(x^{n})=nx^{n−1}

     

    其中 n 是任意实数。

  3. 常数倍规则

    $$
    \dfrac{d}{dx}(c⋅f(x))=c⋅f′(x)或(cv)'=cv'$$

     

    其中 c 是常数。

  4. 和差规则

    $$
    \dfrac{d}{dx}(f(x)±g(x))=f′(x)±g′(x)或(u±v)'=u'±v'$$

  5. 乘积规则

    $$
    \dfrac{d}{dx}(f(x)⋅g(x))=f′(x)⋅g(x)+f(x)⋅g′(x)或(uv)'=u'v+uv'$$

  6. 商规则

    $$
    \dfrac{d}{dx}(\dfrac{f(x)}{g(x)})=\dfrac{f′(x)⋅g(x)−f(x)⋅g′(x)}{[g(x)]^{2}}或(\dfrac{u}{v})'=\dfrac{u'v-uv'}{v^{2}}
    $$

     

    其中 g(x)≠0。

  7. 链式法则(复合函数求导):

    $$
    \dfrac{d}{dx}(f(g(x)))=f′(g(x))⋅g′(x)或\dfrac{dy}{dx}=\dfrac{dy}{du}.\dfrac{du}{dx}
    $$

4.2 常见函数的求导公式

  1. 指数函数

    $$
    \dfrac{d}{dx}(e^{x})=e^{x}
    $$

     

    $$
    \dfrac{d}{dx}(a^{x})=a^{x}ln⁡(a)
    $$

其中 a>0且 a≠1。

  1. 对数函数

    $$
    \dfrac{d}{dx}(ln⁡x)=\dfrac{1}{x}
    $$

     

    $$
    \dfrac{d}{dx}(log⁡_{a}(x))=\dfrac{1}{xln⁡(a)}
    $$

其中 a>0且 a≠1。

  1. 三角函数

    $$
    \dfrac{d}{dx}(sin⁡(x))=cos⁡(x)
    $$

     

    $$
    \dfrac{d}{dx}(cos⁡(x))=−sin⁡(x)
    $$

     

    $$
    \dfrac{d}{dx}(tan⁡(x))=sec^{⁡2}(x)=\dfrac{1}{cos^{2}(x)}
    $$

  2. 反三角函数

    $$
    \dfrac{d}{dx}(arcsin⁡(x))=\dfrac{1}{\sqrt{1-x^{2}}}
    $$

     

    $$
    \dfrac{d}{dx}(arccos⁡(x))=−\dfrac{1}{\sqrt{1-x^{2}}}
    $$

     

    $$
    \dfrac{d}{dx}(arctan⁡(x))=\dfrac{1}{1+x^{2}}
    $$

5.高阶导数

高阶导数是指对函数进行多次求导得到的导数。具体来说,如果一个函数 f(x) 的一阶导数是 f′(x),那么二阶导数就是对一阶导数再求导,记作

$$
f''(x) 或 \dfrac{d^{2}y}{dx^{2}}
$$

。类似地,三阶导数是对二阶导数再求导,记作

$$
f'''(x)或 \dfrac{d^{3}y}{dx^{3}}
$$

,以此类推。

定义

对于一个函数 f(x),其 n 阶导数定义为:

$$
f^{(n)}(x)=\dfrac{d^{n}y}{dx^{n}}
$$

其中 n是正整数。

高阶导数的符号表示

  • 一阶导数:

    $$
    f′(x)或 \dfrac{dy}{dx}
    $$

  • 二阶导数:

    $$
    f''(x) 或 \dfrac{d^{2}y}{dx^{2}}
    $$

  • 三阶导数:

    $$
    f'''(x) 或 \dfrac{d^{3}y}{dx^{3}}
    $$

  • n 阶导数:

    $$
    f^{(n)}(x)或\dfrac{d^{n}y}{dx^{n}}
    $$

例子

1.求

$$
f(x)=x^{3}
$$

的高阶导数

解:

一阶导数:

$$
f′(x)=\dfrac{dx^{3}}{dx}=3x^{2}
$$

二阶导数:

$$
f''(x)=\dfrac{d^{2}x^{3}}{dx^{2}}=\dfrac{d}{dx}(3x^{2})=6x
$$

三阶导数:

$$
f'''(x) 或 \dfrac{d^{3}x^{3}}{dx^{3}}=\dfrac{d}{dx}(6x)=6
$$

四阶导数:

$$
f^{(4)}(x)=\dfrac{d^{4}x^{3}}{dx^{n}}\dfrac{d}{dx}(6)=0
$$

2.求 f(x)=sin⁡(x) 的高阶导数

解:

一阶导数:

$$
f′(x)=\dfrac{dsinx}{dx}=cosx
$$

二阶导数:

$$
f''(x)=\dfrac{d^{2}sinx}{dx^{2}}=\dfrac{d}{dx}(cosx)=-sinx
$$

三阶导数:

$$
f'''(x) 或 \dfrac{d^{3}sinx}{dx^{3}}=\dfrac{d}{dx}(-sinx)=-cosx
$$

四阶导数:

$$
f^{(4)}(x)=\dfrac{d^{4}sinx}{dx^{n}}\dfrac{d}{dx}(-cosx)=sinx
$$

6.隐函数求导

隐式方程是指函数关系不是显式地表示为 y=f(x),而是表示为 F(x,y)=0的形式。隐函数求导的基本思想是通过对方程两边同时求导,然后解出

$$
\dfrac{dy}{dx}
$$

隐函数求导的基本步骤

  1. 对方程两边求导:假设有一个隐式方程 F(x,y)=0,我们对方程两边分别对 x 求导。

  2. 使用链式法则:在求导过程中,如果遇到 y 的函数,需要使用链式法则,将 y 视为 x 的函数

  3. 通过求导得到的方程,解出 dy/dx。

7.参数方程求导

参数方程是一种描述曲线的方法,其中曲线的 x 和 y 坐标分别由两个独立的参数方程表示。假设我们有一个参数方程:

$$
\begin{cases}x=f(t)\\ y=g(t)\end{cases}
$$

其中 t 是参数。我们希望求出曲线的导数 dy/dx。

参数方程求导的基本步骤

  1. 求 x 对 t 的导数:

    $$
    \dfrac{dx}{dt}=f′(t)
    $$

  2. 求 y对 t 的导数:

    $$
    \dfrac{dy}{dt}=g′(t)
    $$

  3. 求 dy/dx:

    $$
    \dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{g′(t)}{f′(t)}
    $$

例子

1.求

$$
\begin{cases}x=t^{2}\\ y=t^{3}\end{cases}
$$

的导数

解:

1.求 x 对 t 的导数:

$$
\dfrac{dx}{dt}=\dfrac{d}{dt}(t^{2})=2t
$$

2.求 y 对 t 的导数:

$$
\dfrac{dy}{dt}=\dfrac{d}{dt}(t^{3})=3t^{2}
$$

3.求dy/dx

$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{3t^{2}}{2t}=\dfrac{3}{2}t
$$

2.求

$$
\begin{cases}x=cost\\ y=sint\end{cases}
$$

的导数

解:

1.求 x 对 t 的导数:

$$
\dfrac{dx}{dt}=\dfrac{d}{dt}(cost)=-sint
$$

2.求 y 对 t 的导数:

$$
\dfrac{dy}{dt}=\dfrac{d}{dt}(sint)=cost
$$

3.求dy/dx

$$
\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{cost}{-sint}=-cot(t)
$$

微分

1.定义

微分dy可以近似地表示为

$$
dy=f'(a)△x或dy=f'(a)dx
$$

注意:△y是精确值,dy是近似值。

2.可微的充要条件

函数 f(x) 在点 x=a 处可微的充要条件是:

  1. 函数在点 x=a处连续:

    $$
    \lim _{⁡x\rightarrow a}f(x)=f(a)
    $$

  2. 函数在点 x=a 处左右导数存在且相等:

    $$
    f'_{-}(a)=f'_{+}(a)
    $$

简单来说,就是可微的充要条件是函数 f(x) 在点 x=a 处可导。

3.微分公式与法则

4.微分的几何意义

5.微分中值定理

5.1 罗尔定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在区间端点的函数值相等,即 f(a)=f(b)。

那么,在开区间 (a,b)内至少存在一点 c,使得:f′(c)=0

罗尔定理的几何意义是:如果函数 f(x) 在区间 [a,b]上的两个端点处的函数值相等,那么在区间 (a,b)内至少存在一点 c,使得该点处的切线是水平的(即导数为零)。

5.2 拉格朗日中值定理

如果函数 f(x)满足以下条件:

  1. 在闭区间 [a,b] 上连续。

  2. 在开区间 (a,b)上可导。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

$$
f′(c)=\dfrac{f(b)−f(a)}{b−a}
$$

拉格朗日中值定理的几何意义是:在区间 [a,b] 上,函数 f(x) 的图像上至少存在一点 c,使得该点处的切线斜率等于区间端点法线的斜率。

罗尔定理是拉格朗日中值定理的特例,从图形上理解就是将拉格朗日中值定理图像中的b点向下旋转,使f(b)=f(a),此时两端点之间连线的斜率为0。

5.3 柯西中值定理

如果函数 f(x) 和 g(x) 满足以下条件:

  1. 在闭区间 [a,b]上连续。

  2. 在开区间 (a,b)上可导。

  3. 在开区间 (a,b) 内,g′(x)≠0。

那么,在开区间 (a,b) 内至少存在一点 c,使得:

$$
\dfrac{f′(c)}{g′(c)}=\dfrac{f(b)−f(a)}{g(b)−g(a)}
$$

柯西中值定理的几何意义是:在区间 [a,b] 上,函数 f(x)和 g(x) 的图像上至少存在一点 c,使得该点处的切线斜率之比等于区间端点连线的斜率之比。

5.4 洛必达法则

洛必达法则用于求解不定型极限问题。不定型极限是指在求极限时,分子和分母都趋向于零(即 0/0 型)或分子和分母都趋向于无穷大(即 ∞/∞ 型)的情况。洛必达法则通过求导数来简化这些极限的计算。

设函数 f(x)和 g(x 满足以下条件:

  1. 在点 a 的某个去心邻域内可导,且 g′(x)≠0。

  2. $$
    \lim _{x\rightarrow a}f(x)=0 且 \lim _{⁡x\rightarrow a}g(x)=0,或者 \lim _{x\rightarrow a}f(x)=±∞ 且 \lim _{x\rightarrow a}g(x)=±∞。
    $$

     

如果

$$
\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$

存在(或为无穷大),那么:

$$
\lim _{x\rightarrow a}\dfrac{f(x)}{g(x)}=\lim _{x\rightarrow a}\dfrac{f′(x)}{g′(x)}
$$

6.函数的单调性

函数的单调性可以通过其导数来判定:

  1. 递增函数: 如果函数 f(x)在区间 (a,b)上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≥0,则函数 f(x) 在区间 (a,b)上是递增的。如果 f′(x)>0,则函数 f(x)在区间 (a,b) 上是严格递增的。

  2. 递减函数: 如果函数 f(x)在区间 (a,b) 上可导,并且对于区间 (a,b) 内的任意 x,总有 f′(x)≤0,则函数 f(x) 在区间 (a,b) 上是递减的。如果 f′(x)<0,则函数 f(x) 在区间 (a,b)上是严格递减的。

7.函数的凹凸性

7.1 函数凹凸性判定

函数的凹凸性可以通过其二阶导数来判定:

  1. 凹函数: 如果函数 f(x) 在区间 (a,b) 上二阶可导,并且对于区间 (a,b) 内的任意 x,总有 f′′(x)≥0,则函数 f(x) 在区间 (a,b) 上是凹的。

  2. 凸函数: 如果函数 f(x) 在区间 (a,b)上二阶可导,并且对于区间 (a,b) 内的任意 xx,总有 f′′(x)≤0,则函数 f(x)在区间 (a,b) 上是凸的。

7.2 拐点

拐点是函数图像从凹变凸或从凸变凹的点。对于函数 f(x),如果 f′′(x)=0 且 f′′(x) 在 x 的两侧符号相反,则 x 是函数的拐点。

8.极值

极值

是指函数在其定义域内的某个局部区间内的最大值或最小值。极值分为局部极大值和局部极小值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≤f(c),则称 f(c)是函数 f(x) 在点 c 处的局部极大值。

如果存在一个区间 (a,b),使得对于所有 x∈(a,b),总有 f(x)≥f(c),则称 f(c) 是函数 f(x) 在点 c 处的局部极小值。

最值

最值是指函数在其整个定义域内的最大值和最小值。最值分为全局最大值和全局最小值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≤f(c),则称 f(c)是函数 f(x)的全局最大值。

如果对于函数 f(x) 的整个定义域内的任意 x,总有 f(x)≥f(c),则称 f(c)是函数 f(x)的全局最小值。

8.1 极值的充分必要条件

必要条件

如果函数 f(x) 在点 x=c 处取得局部极大值或局部极小值,并且 f(x) 在 x=c处可导,则 f′(c)=0。换句话说,极值点必须是函数的驻点。

充分条件

一阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)>0,在c 的右侧 f′(x)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且在 c 的左侧 f′(x)<0,在c 的右侧 f′(x)>0,则 x=c 是局部极小值。

二阶导数判定法

  1. 局部极大值: 如果 f′(c)=0,并且 f′′(c)<0,则 x=c 是局部极大值。

  2. 局部极小值: 如果 f′(c)=0,并且 f′′(c)>0,则 x=c 是局部极小值。

不定积分

1.定义

如果函数 F(x) 满足 F′(x)=f(x),则称 F(x) 是 f(x) 的一个原函数。不定积分

$$
\int f(x) dx
$$

表示 f(x) 的所有原函数,通常写成:

$$
\int f(x) dx=F(x)+C
$$

其中,C是积分常数,表示原函数的不确定性。 f(x)是被积函数,dx表示对 x 的积分变量。

不定积分的结果是一个函数簇,而不是一个具体的数值。其几何含义是一组平行的曲线簇。

2.基本积分公式

  1. 常数积分

    $$
    ∫k dx=kx+C(其中 k 是常数)
    $$

  2. 幂函数积分

    $$
    ∫x^{n} dx=\dfrac{x^{n+1}}{n+1}+C(其中 n≠−1)
    $$

  3. 指数函数积分

    $$
    ∫e^{x} dx=e^{x}+C
    $$

     

    $$
    ∫a^{x} dx=\dfrac{a^{x}}{ln⁡a}+C(其中 a>0 且 a≠1)
    $$

     

  4. 对数函数积分

    $$
    ∫\dfrac{1}{x} dx=ln⁡∣x∣+C
    $$

  5. 三角函数积分

    $$
    ∫sin⁡x dx=−cos⁡x+C
    $$

     

    $$
    ∫cos⁡x dx=sin⁡x+C
    $$

  6. 反三角函数积分

    $$
    ∫\dfrac{1}{\sqrt{1−x^{2}}} dx=arcsin⁡x+C
    $$

     

    $$
    ∫\dfrac{1}{1+x^{2}} dx=arctan⁡x+C
    $$

3.换元积分法

3.1 第一类换元积分法

  1. 选择合适的变量替换: 选择一个合适的变量替换 u=g(x),使得积分变得更简单。

  2. 求导数: 求 u 对 x 的导数

    $$
    \dfrac{du}{dx}=g′(x)
    $$

     

    ,并将其改写为

    $$
    du=g′(x) dx
    $$

  3. 替换积分变量: 将原积分中的 x 替换为 u,并将 dx 替换为

    $$
    \dfrac{du}{g′(x)}
    $$

  4. 求解新积分: 求解新的积分

    $$
    ∫f(u) du
    $$

  5. 回代变量: 将 u 回代为 g(x),得到最终的不定积分结果。

简单理解就是观察函数,将d前边的某一部分求原函数,然后放到d的里面。

3.2 第二类换元积分法

第二类换元积分法通常涉及三角函数替换或带根号形式的替换。

  1. 选择合适的变量替换: 选择一个合适的变量替换 x=g(t),使得积分变得更简单。

  2. 求导数: 求 x 对 t 的导数

    $$
    \dfrac{dx}{dt}=g′(t)
    $$

     

    ,并将其改写为

    $$
    dx=g′(t) dt
    $$

  3. 替换积分变量: 将原积分中的 x 替换为 g(t),并将 dx替换为 g′(t) dt。

  4. 求解新积分: 求解新的积分

    $$
    ∫f(g(t))g′(t) dt
    $$

  5. 回代变量: 将 t 回代为

    $$
    g^{−1}(x)
    $$

     

    ,得到最终的不定积分结果。

简单理解就是将变量替换 x=g(t),对dx求出dt,然后对t进行积分,最后将t换回x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值