【考研数学一·高数(1)】常用基础知识

1.常用基础知识

1.1.函数

1.1.1.重要结论

  1. f ( x ) f(x) f(x)是可导的偶函数,则 f ′ ( x ) f'(x) f(x)是奇函数.

  2. f ( x ) f(x) f(x)是可导的奇函数,则 f ′ ( x ) f'(x) f(x)是偶函数.

  3. f ( x ) f(x) f(x)是可导的以 T T T为周期的周期函数,则 f ′ ( x ) f'(x) f(x)是以 T T T为周期的周期函数.

  4. 连续的奇函数的一切原函数都是偶函数.

  5. 连续的偶函数的原函数中仅有一个是奇函数.

  6. 若连续函数 f ( x ) f(x) f(x) T T T为周期且 ∫ 0 T f ( x ) d x = 0 \int_0^Tf(x)\mathrm{d}x=0 0Tf(x)dx=0,则 f ( x ) f(x) f(x)的一切原函数也以 T T T为周期.

  7. f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) f'(x) f(x)有界,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内有界.

1.1.2.图像

1.1.2.1.极坐标
  • 心形线(外摆线)—— r = a ( 1 − cos ⁡ θ ) ( a > 0 ) r=a(1-\cos\theta)(a>0) r=a(1cosθ)(a>0)
直角坐标系(a=1)
直角坐标系(a=1)
极坐标系(a=1)
极坐标系(a=1)
  • 三叶玫瑰线—— r = a sin ⁡ 3 θ ( a > 0 ) r=a\sin3\theta(a>0) r=asin3θ(a>0)
直角坐标系(a=1)
直角坐标系(a=1)
极坐标系(a=1)
极坐标系(a=1)
  • 阿基米德螺线—— r = a θ ( a > 0 , θ ⩾ 0 ) r=a\theta(a>0,\theta\geqslant0) r=aθ(a>0,θ0)
直角坐标系(a=1)
直角坐标系(a=1)
极坐标系(a=1)
极坐标系(a=1)
  • 伯努利双纽线—— r 2 = a 2 cos ⁡ 2 θ 或 r 2 = a 2 sin ⁡ 2 θ ( a > 0 ) r^2=a^2\cos2\theta或r^2=a^2\sin2\theta(a>0) r2=a2cos2θr2=a2sin2θ(a>0)
cos-极坐标系(a=1)
cos-极坐标系(a=1)
sin-极坐标系(a=1)
sin-极坐标系(a=1)
1.1.2.2.参数方程
  • 摆线(平摆线)—— { x = r ( t − sin ⁡ t ) y = r ( 1 − cos ⁡ t ) \begin{cases}x=r(t-\sin t)\\y=r(1-\cos t)\end{cases} {x=r(tsint)y=r(1cost)
a=1
a=1
  • 星形线(内摆线)—— { x = r cos ⁡ 3 t y = r sin ⁡ 3 t \begin{cases}x=r\cos^3t\\y=r\sin^3t\end{cases} {x=rcos3ty=rsin3t
a=1
a=1

1.2.数列

1.2.1.等差数列

  1. a n = a 1 + ( n − 1 ) d a_n=a_1+(n-1)d an=a1+(n1)d

  2. S n = n a 1 + n ( n − 1 ) 2 d = n 2 ( a 1 + a n ) S_n=na_1+\frac{n(n-1)}{2}d=\frac{n}{2}(a_1+a_n) Sn=na1+2n(n1)d=2n(a1+an)

1.2.2.等比数列

  1. a n = a 1 q n − 1 ( q ≠ 0 ) a_n=a_1q^{n-1}(q\ne 0) an=a1qn1(q=0)

  2. S n = { n a 1 , q = 1 a 1 ( 1 − q n ) 1 − q , q ≠ 1 S_n=\begin{cases}na_1,q=1\\\frac{a_1(1-q^n)}{1-q},q\ne 1\end{cases} Sn={na1,q=11qa1(1qn),q=1

1.2.3.常见数列前n项和

  1. ∑ k = 1 n = 1 + 2 + . . . + n = n ( n + 1 ) 2 \sum\limits_{k=1}^{n}=1+2+...+n=\frac{n(n+1)}{2} k=1n=1+2+...+n=2n(n+1)

  2. ∑ k = 1 n = 1 + 2 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum\limits_{k=1}^{n}=1+2^2+...+n^2=\frac{n(n+1)(2n+1)}{6} k=1n=1+22+...+n2=6n(n+1)(2n+1)

  3. ∑ k = 1 n 1 k ( k + 1 ) = 1 1 × 2 + 1 2 × 3 + . . . 1 n ( n + 1 ) = n n + 1 \sum\limits_{k=1}^{n}\frac{1}{k(k+1)}=\frac{1}{1\times2}+\frac{1}{2\times3}+...\frac{1}{n(n+1)}=\frac{n}{n+1} k=1nk(k+1)1=1×21+2×31+...n(n+1)1=n+1n

1.3.三角函数

1.3.1.基本关系

  1. sin ⁡ 2 α + cos ⁡ 2 α = 1 \sin ^2\alpha+\cos ^2\alpha=1 sin2α+cos2α=1

  2. 1 + tan ⁡ 2 α = sec ⁡ 2 α 1+\tan ^2\alpha=\sec ^2\alpha 1+tan2α=sec2α

  3. 1 + cot ⁡ 2 α = csc ⁡ 2 α 1+\cot ^2\alpha=\csc ^2\alpha 1+cot2α=csc2α

1.3.2.诱导公式

  • 奇变偶不变,符号看象限

1.3.3.重要公式

1.3.3.1.倍角公式
  1. sin ⁡ 2 α = 2 sin ⁡ α cos ⁡ α \sin2\alpha=2\sin\alpha\cos\alpha sin2α=2sinαcosα

  2. cos ⁡ 2 α = cos ⁡ 2 α − sin ⁡ 2 α = 2 cos ⁡ 2 α − 1 = 1 − 2 sin ⁡ 2 α \cos2\alpha=\cos^2\alpha-\sin^2\alpha=2\cos^2\alpha-1=1-2\sin^2\alpha cos2α=cos2αsin2α=2cos2α1=12sin2α

  3. sin ⁡ 3 α = − 4 sin ⁡ 2 α + 3 sin ⁡ α \sin3\alpha=-4\sin^2\alpha+3\sin\alpha sin3α=4sin2α+3sinα

  4. cos ⁡ 3 α = 4 cos ⁡ 2 α − 3 cos ⁡ α \cos3\alpha=4\cos^2\alpha-3\cos\alpha cos3α=4cos2α3cosα

  5. tan ⁡ 2 α = 2 tan ⁡ α 1 − tan ⁡ 2 α \tan2\alpha=\frac{2\tan\alpha}{1-\tan^2\alpha} tan2α=1tan2α2tanα

  6. cot ⁡ 2 α = cot ⁡ 2 α − 1 2 cot ⁡ α \cot2\alpha=\frac{\cot^2\alpha-1}{2\cot\alpha} cot2α=2cotαcot2α1

1.3.3.2.半角公式
  1. sin ⁡ 2 α 2 = 1 − cos ⁡ α 2 \sin^2\frac{\alpha}{2}=\frac{1-\cos\alpha}{2} sin22α=21cosα

    cos ⁡ 2 α 2 = 1 + cos ⁡ α 2 \cos^2\frac{\alpha}{2}=\frac{1+\cos\alpha}{2} cos22α=21+cosα

  2. sin ⁡ α 2 = ± 1 − cos ⁡ α 2 \sin\frac{\alpha}{2}=\pm\sqrt{\frac{1-\cos\alpha}{2}} sin2α=±21cosα

    cos ⁡ α 2 = ± 1 + cos ⁡ α 2 \cos\frac{\alpha}{2}=\pm\sqrt{\frac{1+\cos\alpha}{2}} cos2α=±21+cosα

  3. tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α \tan\frac{\alpha}{2}=\frac{1-\cos\alpha}{\sin\alpha}=\frac{\sin\alpha}{1+\cos\alpha}=\pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}} tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα

  4. cot ⁡ α 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \cot\frac{\alpha}{2}=\frac{\sin\alpha}{1-\cos\alpha}=\frac{1+\cos\alpha}{\sin\alpha}=\pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}} cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

1.3.3.3.和差公式
  1. sin ⁡ ( α ± β ) = sin ⁡ α cos ⁡ β ± sin ⁡ β cos ⁡ α \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\sin\beta\cos\alpha sin(α±β)=sinαcosβ±sinβcosα

  2. cos ⁡ ( α ± β ) = cos ⁡ α cos ⁡ β ∓ sin ⁡ α sin ⁡ β \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta cos(α±β)=cosαcosβsinαsinβ

  3. tan ⁡ ( α ± β ) = tan ⁡ α ± tan ⁡ β 1 ∓ tan ⁡ α tan ⁡ β \tan(\alpha\pm\beta)=\frac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta} tan(α±β)=1tanαtanβtanα±tanβ

  4. cot ⁡ ( α ± β ) = cot ⁡ α cot ⁡ β ∓ 1 cot ⁡ β ± cot ⁡ α \cot(\alpha\pm\beta)=\frac{\cot\alpha\cot\beta\mp1}{\cot\beta\pm\cot\alpha} cot(α±β)=cotβ±cotαcotαcotβ1

1.3.3.4.积化和差
  1. sin ⁡ α cos ⁡ β = 1 2 [ sin ⁡ ( α + β ) + sin ⁡ ( α − β ) ] \sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha+\beta)+\sin(\alpha-\beta)] sinαcosβ=21[sin(α+β)+sin(αβ)]

  2. cos ⁡ α sin ⁡ β = 1 2 [ sin ⁡ ( α + β ) − sin ⁡ ( α − β ) ] \cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha+\beta)-\sin(\alpha-\beta)] cosαsinβ=21[sin(α+β)sin(αβ)]

  3. cos ⁡ α cos ⁡ β = 1 2 [ cos ⁡ ( α + β ) + cos ⁡ ( α − β ) ] \cos\alpha\cos\beta=\frac{1}{2}[\cos(\alpha+\beta)+\cos(\alpha-\beta)] cosαcosβ=21[cos(α+β)+cos(αβ)]

  4. sin ⁡ α sin ⁡ β = 1 2 [ cos ⁡ ( α − β ) − cos ⁡ ( α + β ) ] \sin\alpha\sin\beta=\frac{1}{2}[\cos(\alpha-\beta)-\cos(\alpha+\beta)] sinαsinβ=21[cos(αβ)cos(α+β)]

1.3.3.5.和差化积
  1. sin ⁡ α + sin ⁡ β = 2 s i n α + β 2 cos ⁡ α − β 2 \sin\alpha+\sin\beta=2sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβ

  2. sin ⁡ α − sin ⁡ β = 2 s i n α − β 2 cos ⁡ α + β 2 \sin\alpha-\sin\beta=2sin\frac{\alpha-\beta}{2}\cos\frac{\alpha+\beta}{2} sinαsinβ=2sin2αβcos2α+β

  3. cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 \cos\alpha+\cos\beta=2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2} cosα+cosβ=2cos2α+βcos2αβ

  4. cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \cos\alpha-\cos\beta=-2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} cosαcosβ=2sin2α+βsin2αβ

1.3.3.6.万能公式

u = tan ⁡ x 2 ( − π < x < π ) ⇒ { sin ⁡ x = 2 u 1 + u 2 cos ⁡ x = 1 − u 2 1 + u 2 u=\tan\frac{x}{2}(-\pi<x<\pi)\Rightarrow\begin{cases}\sin x=\frac{2u}{1+u^2}\\\cos x=\frac{1-u^2}{1+u^2}\end{cases} u=tan2x(π<x<π){sinx=1+u22ucosx=1+u21u2

1.4.指数运算法则

  1. a α ⋅ a β = a α + β a^\alpha\cdot a^\beta=a^{\alpha+\beta} aαaβ=aα+β

  2. a α a β = a α − β \frac{a^\alpha}{a^\beta}=a^{\alpha-\beta} aβaα=aαβ

  3. ( a α ) β = a α β {(a^\alpha)^\beta}=a^{\alpha\beta} (aα)β=aαβ

  4. ( a b ) α = a α b α {(ab)}^\alpha=a^\alpha b^\alpha (ab)α=aαbα

  5. ( a b ) α = a α b α {(\frac{a}{b})}^\alpha=\frac{a^\alpha}{b^\alpha} (ba)α=bαaα

1.5.对数运算法则

  1. log ⁡ a M N = log ⁡ a M + log ⁡ a N \log_aMN=\log_aM+\log_aN logaMN=logaM+logaN

  2. log ⁡ a M N = log ⁡ a M − log ⁡ a N \log_a\frac{M}{N}=\log_aM-\log_aN logaNM=logaMlogaN

  3. log ⁡ a M n = n log ⁡ a M \log_aM^n=n\log_aM logaMn=nlogaM

  4. log ⁡ a M n = 1 n log ⁡ a M \log_a\sqrt[n]M=\frac{1}{n}\log_aM loganM =n1logaM

1.6.一元二次方程基础

  • a x 2 + b x + c = 0 ( a ≠ 0 ) ax^2+bx+c=0(a\ne0) ax2+bx+c=0(a=0)

  • 判别式 Δ = b 2 − 4 a c { > 0 , 2 个不等实根 ⇒ x 1 , 2 = − b ± b 2 − 4 a c 2 a = 0 , 2 个相等实根 < 0 , 2 个共轭复根 ⇒ x 1 , 2 = − b ± 4 a c − b 2 i 2 a = α ± β i \Delta=b^2-4ac\begin{cases}>0,2个不等实根\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\\=0,2个相等实根\\<0,2个共轭复根\Rightarrow x_{1,2}=\frac{-b\pm\sqrt{4ac-b^2}i}{2a}=\alpha\pm\beta i\end{cases} Δ=b24ac >0,2个不等实根x1,2=2ab±b24ac =0,2个相等实根<0,2个共轭复根x1,2=2ab±4acb2 i=α±βi

  • 韦达定理 ( Δ ⩾ 0 ) { x 1 + x 2 = − b a x 1 x 2 = c a (\Delta\geqslant0)\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases} (Δ0){x1+x2=abx1x2=ac

  • 抛物线 y = a x 2 + b x + c      y=ax^2+bx+c~~~~ y=ax2+bx+c    顶点 ( − b 2 a , c − b 2 4 a ) (-\frac{b}{2a},c-\frac{b^2}{4a}) (2ab,c4ab2)

1.7.因式分解公式

  1. ( a ± b ) 2 = a 2 ± 2 a b + b 2 {(a\pm b)}^2=a^2\pm2ab+b^2 (a±b)2=a2±2ab+b2

  2. ( a ± b ) 3 = a 3 ± 3 a b + 3 a b 2 ± b 3 {(a\pm b)^3}=a^3\pm3a^b+3ab^2\pm b^3 (a±b)3=a3±3ab+3ab2±b3

  3. a 2 − b 2 = ( a + b ) ( a − b ) a^2-b^2=(a+b)(a-b) a2b2=(a+b)(ab)

  4. a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3=(a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)

  5. a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a^3+b^3=(a+b)(a^2-ab+b^2) a3+b3=(a+b)(a2ab+b2)

  6. a n − b n = { ( a − b ) ( a n − 1 + a n − 2 b + . . . + a b n − 2 + b n − 1 ) ( n 是正整数 ) ( a + b ) ( a n − 1 − a n − 2 b + . . . + a b n − 2 − b n − 1 ) ( n 是正偶数 ) a^n-b^n=\begin{cases}(a-b)(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1})(n是正整数)\\(a+b)(a^{n-1}-a^{n-2}b+...+ab^{n-2}-b^{n-1})(n是正偶数)\end{cases} anbn={(ab)(an1+an2b+...+abn2+bn1)(n是正整数)(a+b)(an1an2b+...+abn2bn1)(n是正偶数)

  7. a n + b n = ( a + b ) ( a n − 1 − a n − 2 b + . . . − a b n − 2 + b n − 1 ) ( n 是正奇数 ) a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+...-ab^{n-2}+b^{n-1})(n是正奇数) an+bn=(a+b)(an1an2b+...abn2+bn1)(n是正奇数)

  8. 二项式定理

    ( a + b ) n = ∑ k = 0 n C n k a n − k b k = a n + n a n − 1 b + n ( n − 1 ) 2 ! a n − 2 b 2 + . . . + n ( n − 1 ) . . . ( n − k + 1 ) k ! a n − k b k + . . . + n a b n − 1 + b n {(a+b)}^n=\sum\limits_{k=0}^{n}C_n^ka^{n-k}b^k=a^n+na^{n-1}b+\frac{n(n-1)}{2!}a^{n-2}b^2+...+\frac{n(n-1)...(n-k+1)}{k!}a^{n-k}b^k+...+nab^{n-1}+b^n (a+b)n=k=0nCnkankbk=an+nan1b+2!n(n1)an2b2+...+k!n(n1)...(nk+1)ankbk+...+nabn1+bn

1.8.阶乘与双阶乘

  1. n ! = 1 ⋅ 2 ⋅ 3 ⋅ . . . ⋅ n          ( 0 ! = 1 ) n!=1\cdot2\cdot3\cdot...\cdot n~~~~~~~~(0!=1) n!=123...n        (0!=1)

  2. ( 2 n ) ! ! = 2 ⋅ 4 ⋅ 6 ⋅ . . . ⋅ ( 2 n ) = 2 n ⋅ n ! (2n)!!=2\cdot4\cdot6\cdot...\cdot(2n)=2^n\cdot n! (2n)!!=246...(2n)=2nn!

  3. ( 2 n − 1 ) ! ! = 1 ⋅ 3 ⋅ 5 ⋅ . . . ⋅ ( 2 n − 1 ) (2n-1)!!=1\cdot3\cdot5\cdot...\cdot(2n-1) (2n1)!!=135...(2n1)

1.9.常用不等式

  1. { ∣ a ± b ∣ ⩽ ∣ a ∣ + ∣ b ∣ ∣ ∣ a ∣ − ∣ b ∣ ∣ ⩽ ∣ a − b ∣ \begin{cases}|a\pm b|\leqslant|a|+|b|\\||a|-|b||\leqslant|a-b|\end{cases} {a±ba+b∣∣ab∣∣ab

    推广 { 离散 ∣ a 1 ± a 2 ± . . . ± a n ∣ ⩽ ∣ a 1 ∣ + ∣ a 2 ∣ + . . . ∣ a n ∣ 连续 ∣ ∫ a b f ( x ) d x ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x 推广\begin{cases}离散|a_1\pm a_2\pm...\pm a_n|\leqslant|a_1|+|a_2|+...|a_n|\\连续|\int_a^bf(x)\mathrm{d}x|\leqslant\int_a^b|f(x)|\mathrm{d}x\end{cases} 推广{离散a1±a2±...±ana1+a2+...∣an连续abf(x)dxabf(x)dx

  2. a b ⩽ a + b 2 ⩽ a 2 + b 2 2 ( a > 0 , b > 0 ) \sqrt{ab}\leqslant\frac{a+b}{2}\leqslant\sqrt{\frac{a^2+b^2}{2}}(a>0,b>0) ab 2a+b2a2+b2 (a>0,b>0)

    ∣ a b ∣ ⩽ a 2 + b 2 2 |ab|\leqslant\frac{a^2+b^2}{2} ab2a2+b2

    a b c 3 ⩽ a + b + c 3 ⩽ a 2 + b 2 + c 2 3 ( a > 0 , b > 0 , c > 0 ) \sqrt[3]{abc}\leqslant\frac{a+b+c}{3}\leqslant\sqrt{\frac{a^2+b^2+c^2}{3}}(a>0,b>0,c>0) 3abc 3a+b+c3a2+b2+c2 (a>0,b>0,c>0)

  3. a > b > 0 { n > 0 ⇒ a n > b n n < 0 ⇒ a n < b n a>b>0\begin{cases}n>0\Rightarrow a^n>b^n\\n<0\Rightarrow a^n<b^n\end{cases} a>b>0{n>0an>bnn<0an<bn

  4. 0 < a < x < b 0 < c < y < d } ⇒ c b < y x < d a \left.\begin{matrix}0<a<x<b\\0<c<y<d\end{matrix}\right\}\Rightarrow\frac{c}{b}<\frac{y}{x}<\frac{d}{a} 0<a<x<b0<c<y<d}bc<xy<ad

  5. sin ⁡ x < x < tan ⁡ x ( 0 < x < π 2 ) \sin x<x<\tan x(0<x<\frac{\pi}{2}) sinx<x<tanx(0<x<2π)

  6. sin ⁡ x < x ( x > 0 ) \sin x<x(x>0) sinx<x(x>0)

  7. arctan ⁡ x ⩽ x ⩽ arcsin ⁡ x ( 0 ⩽ x ⩽ 1 ) \arctan x\leqslant x\leqslant\arcsin x(0\leqslant x\leqslant 1) arctanxxarcsinx(0x1)

  8. e x ⩾ x + 1 e^x\geqslant x+1 exx+1

  9. x − 1 ⩾ ln ⁡ x ( x > 0 ) x-1\geqslant \ln x(x>0) x1lnx(x>0)

  10. 1 1 + x < ln ⁡ ( 1 + 1 x ) < 1 x ( x > 0 ) \frac{1}{1+x}<\ln(1+\frac{1}{x})<\frac{1}{x}(x>0) 1+x1<ln(1+x1)<x1(x>0)

  11. x − 1 < [ x ] ⩽ x x-1<[x]\leqslant x x1<[x]x

    [ x + n ] = [ x ] + n ( n 为整数 ) [x+n]=[x]+n(n为整数) [x+n]=[x]+n(n为整数)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值