论文阅读——《Metapath-fused heterogeneous graph network for molecular property prediction》

本文提出了一种新的方法MolPMol,通过在分子建模中利用异构图和元路径,捕捉不同化学官能团的复杂相互作用,以提高分子性质预测的准确性。模型通过分层关注策略学习原子节点和关系级的交互,展示了在药物开发中的潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

分子性质预测可以指导药物开发过程中的分子设计和优化。由于分子本质上是图结构数据,图学习大大提高了分子性质预测任务。然而,许多现有的基于图的方法是为同构图中的低阶节点交互而设计的,忽略了不同类型的原子节点或边。在本文中,我们建议将一个分子建模为一个异构图,并利用元路径来捕捉化学官能团的潜在特征。为了保留元路径揭示的化学环境,我们构建了基于元路径的连通性,并根据关系类型将异构图分解为子图。此外,还设计了分层关注策略,在节点级和关系级对异构信息进行聚合。因此,我们的方法更自然,更适合于学习原子节点之间复杂的相互作用和有效的分子指纹。我们在公共分子数据集上评估了我们的模型,实验结果表明我们的模型与现有方法相比具有竞争力。

1介绍

药物研发是一个耗时、复杂和昂贵的过程。在药物发现管道中,分子性质预测是自动筛选具有理想性质的靶标药物的基本任务之一[1]。随着深度学习的发展,分子表示学习比基于特征的方法显示出灵活性和有效性,并在分子性质预测任务中得到越来越多的关注,如分子分类[2,3]、分子性质回归[4,5,1]和分子生成[6]。

早些年,一些研究使用SMILES (Simplified Molecular Input Line Entry System,简化分子输入行输入系统)[3],这是一种类似顺序文本的表示,用于输入rnn (Recurrent Neural Networks,循环神经网络)或cnn (Convolutional Neural Networks,卷积神经网络)。然而,这种一维序列数据部分丢失了分子的拓扑信息,导致性能受限。

随着最近图学习方法的成功[7-9],解决这一任务的基于图的模型得到了越来越多的关注。把原子当作节点,把化学键当作边,可以很自然地把分子建模成一个图。因此,我们可以使用图神经网络(gnn)来学习分子指纹。gnn是基于灵活的消息传递层构建的,其中每个嵌入的节点聚合来自相邻节点的消息[10]。因此,可以从原子级消息传播的角度来学习分子的特征表示。

然而,大多数现有的基于gnn的方法[1]只考虑同质图中相邻原子的相互作用,其中节点类型表示和边缘类型表示由线性层投影,并且仅由来自最近节点的消息交互更新,忽略了来自不同化学官能团的复杂异构原子之间的高阶相互作用。因此,一个问题是如何为这种相互作用建模。我们的答案是异构信息网络上的元路径[11]。与同质图相比,异构信息网络(HINs)[12]由于具有学习多种节点类型和关系类型的灵活能力,因此更适合于分子建模。

异构信息网络(或异构图)包含多种类型的节点或关系,被广泛用于挖掘复杂的语义信息[12]。因此,使用HIN对分子进行建模将允许基于图的模型更多地了解原子之间的相互作用。

近年来,人们提出了各种异构图神经网络(hgnn)[13,14]来学习HINs的低维表示。学习到的表示保留了异构信息,可以进一步用于下游任务,如节点分类和链路预测。

在异构图学习方法中,元路径是捕获HINs结构和语义特征的经典方法。元路径(meta - path)[11,15]是HIN任务中的一种强大工具,型和它可以用来描述对象之间更复杂的关系。元路径是有序描述节点类边缘类型的复合关系序列[15]。以图1为例&#x

<think>嗯,用户想了解多模态情感分析中的特定于模态的残差网络的研究和实现。首先,我需要确认什么是多模态情感分析。根据引用[1],它涉及处理来自不同模态(如文本、音频、视觉)的数据,用于分析情感,尤其是在模态缺失的情况下。然后,特定于模态的残差网络可能指的是针对每个模态设计的网络结构,可能结合残差连接来提升性能。 接下来,我需要回顾现有的研究。残差网络在计算机视觉中应用广泛,如ResNet和DenseNet(引用[2]),它们在处理深层网络时有效缓解梯度消失问题。多模态领域,可能需要将这种结构应用于不同模态的特征提取。例如,每个模态可能有独立的残差网络分支,再融合特征。 然后,用户提到的实现方面,可能需要参考具体的代码库。引用[1]中的EMMR项目可能包含相关实现,可以查看其GitHub代码。此外,引用[3]提到多模态预训练和跨模态检索,可能涉及模态特定网络的设计,比如如何处理不同模态的特征。 需要解决的问题包括:1)如何设计模态特定的残差网络结构;2)如何融合不同模态的特征;3)如何处理模态缺失或不确定性。例如,在EMMR中,可能使用特定模态的残差块来处理各自的数据,再通过某种机制(如注意力)进行融合,同时应对缺失模态的情况。 此外,用户可能需要了解现有的模型架构,比如是否每个模态都有独立的ResNet分支,以及如何在这些分支中加入残差连接。引用[2]提到的多尺度模型设计、FPN等可能对多模态特征融合有借鉴意义。比如,使用不同层级的特征进行融合,或者使用跨模态的注意力机制。 在实现上,可能需要使用深度学习框架如PyTorch或TensorFlow,构建多个残差网络分支,每个处理一个模态,然后将特征合并。同时,需要处理模态缺失的情况,比如通过零填充或生成替代特征,如引用[1]中的方法。 可能的相关问题包括优化方法、处理模态缺失的技术、如何评估模型性能等。需要确保回答结构清晰,步骤明确,并引用相关的文献和代码资源。</think>### 多模态情感分析中特定于模态的残差网络研究及实现 #### 1. 研究背景 多模态情感分析通过融合文本、语音、视觉等模态数据提升情感识别准确性[^1]。特定于模态的残差网络(Modality-Specific Residual Networks)通过以下方式优化模型性能: - **模态独立性**:为每个模态设计独立的残差分支,避免特征混淆。 - **梯度优化**:利用残差连接(如ResNet[^2])缓解梯度消失问题,增强深层网络训练稳定性。 - **动态特征融合**:在高层通过注意力机制或加权融合整合多模态特征[^3]。 #### 2. 核心实现方法 ##### 2.1 残差网络设计 - **单模态分支**:每个模态(如文本、音频、视觉)使用独立的残差块。例如: ```python class ModalityResNet(nn.Module): def __init__(self, input_dim): super().__init__() self.res_layer1 = nn.Sequential( nn.Linear(input_dim, 256), nn.ReLU(), nn.Linear(256, 256) # 残差跳跃连接 ) def forward(self, x): residual = x x = self.res_layer1(x) x += residual # 残差相加 return x ``` - **跨模态特征对齐**:通过对比学习或对抗训练(如DANN)对齐不同模态的特征分布。 ##### 2.2 多模态融合策略 - **加权融合**:为每个模态分配动态权重,例如基于注意力机制: $$ \alpha_i = \text{softmax}(W \cdot h_i + b) $$ 其中$h_i$为第$i$个模态的特征,$\alpha_i$为其权重。 - **层级融合**:在残差块的不同层级进行特征交互(参考FPN[^2]的多尺度设计)。 #### 3. 研究进展 - **EMMR框架**:提出模态不确定性的鲁棒性处理方法,通过残差网络补偿缺失模态的影响。 - **跨模态预训练**:结合BERT等模型,在残差结构中嵌入跨模态对齐模块(如CLIP风格对比学习)。 #### 4. 实现示例(基于PyTorch) ```python class MultimodalResNet(nn.Module): def __init__(self, text_dim, audio_dim, visual_dim): super().__init__() # 模态特定残差分支 self.text_net = ModalityResNet(text_dim) self.audio_net = ModalityResNet(audio_dim) self.visual_net = ModalityResNet(visual_dim) # 融合层 self.attention = nn.MultiheadAttention(embed_dim=256, num_heads=4) self.classifier = nn.Linear(256, 3) # 情感分类 def forward(self, text, audio, visual): text_feat = self.text_net(text) audio_feat = self.audio_net(audio) visual_feat = self.visual_net(visual) # 跨模态注意力融合 fused, _ = self.attention(text_feat, audio_feat, visual_feat) return self.classifier(fused) ``` #### 5. 关键挑战与优化 - **模态缺失处理**:在残差网络中引入零初始化掩码或生成式补全(如GAN)。 - **计算效率**:使用分组卷积或模型蒸馏降低多分支计算开销。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值