论文笔记:Deformable 3D Gaussian Splatting for Animatable Human Avatars

重点:

  1. 处理超出SMPL顶点的变形
  2. 无掩码训练,自动分离人和背景

1.初始化

背景——初始化球面上随机点,用i=b标记父类;

人类——使用SMPL生成参数化网格,每个网格面中心作为初始化高斯,并分配好父索引i和表面法线n。

2.变形

(1)根据父级(SMPL顶点)变形。比较给定姿势和标准姿势的网格,得到顶点变形矩阵Dt,根据该矩阵变形高斯。

(2)MLP对高斯校准。MLP采用高斯 Pi 中心与 SMPL模型的人体关节Jt之间的距离来预测上一步变形的残余细化(变形矩阵Dr)。

3.更新高斯

高斯被更新时,会被变回标准空间,依次应用两个矩阵的逆。当高斯数量增加时,父索引被传递给新的高斯。根据距离,每1000次迭代更新一次父分配。据表面距离远于阈值的高斯分配给背景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值