windows系统复现gauhuman

克隆代码

git clone https://github.com/skhu101/GauHuman.git

环境配置

如果没有安装过vs2019,需要安装,并且将其添加在系统环境变量path中。

另外,以防万一还是安装好ninja windows版本(用pip install ninja命令大概率还是会出错)。在这里Releases · ninja-build/ninja · GitHub下载windows版本(我用的1.11.1版本),解压后同样添加E:/ninja类似这样的路径到系统环境变量path中。

新建conda环境:

conda create --name gauhuman python=3.8
conda activate gauhuman

安装torch要注意和cuda版本兼容的问题,我这里CUDA版本12.1,所以使用这个命令:

conda install pytorch==2.1.1 torchvision==0.16.1 torchaudio==2.1.1 pytorch-cuda=12.1 -c pytorch -c nvidia

官网链接:

https://pytorch.org/get-started/previous-versions/

接下来安装这两个库:

    pip install submodules/diff-gaussian-rasterization
    pip install submodules/simple-knn

然后安装knn_cuda,这里千万不能使用给的命令,需要自己下载windows版本,过程如下:

1.在官网上克隆windows版本

https://github.com/unlimblue/KNN_CUDA/tree/windows

命令:

git clone --branch windows https://github.com/blukaz/KNN_CUDA

2.以管理员身份打开windows PowerShell输入下面的命令,以下载Chocolatey与make:

Get-ExecutionPolicy

会返回一个字符串:Restricted 。然后输入:

Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServicePointManager]::SecurityProtocol -bor 3072; iex ((New-Object System.Net.WebClient).DownloadString('https://community.chocolatey.org/install.ps1'))

没有出现报错Chocolatey就下载好了;windows PowerShell可以关掉。

以管理员身份打开cmd,切换到KNN_CUDA目录,激活gauhuman环境:

(cd命令切换目录,activate gauhuman激活)

在KNN_CUDA目录下,输入命令:

make

这里可能会报错,复制文件时出错,解决办法是:打开makefile文件,找到这块代码:

把copy这一行代码注释掉,自己去复制ninja文件到C:\Windows\System32\bin(或者C:\Windows\System32)目录下。然后重新make。

完成后输入:

make install

到这里,knn_cuda库就下载完成了。

然后是另一个不太一样的库安装,mmhuman3d。直接下载会出错。

这里可以先去requirement.txt文件中,把mmhuman3d这一行删掉。

安装命令:

git clone https://github.com/Wei-Chen-hub/mmhuman3d.git
cd mmhuman3d
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -v -e . -i https://pypi.tuna.tsinghua.edu.cn/simple  # or "python setup.py develop"

安装完成后,现在可以输入命令:

pip install -r requirement.txt

数据集和SMPL Model准备

数据集下载按照github的提示就可以了。

这里要注意一下smpl模型的下载:

解压后修改models/basic...pkl模型名字:SMPL_NEUTRAL.pkl

还需要一个步骤,才能把模型放进assets中:

https://github.com/vchoutas/smplx

git clone https://github.com/vchoutas/smplx.git

按照这里的步骤移除Chumpy objects。具体过程(可以在其他环境中进行):

pip install chumpy
python tools/clean_ch.py --input-models path-to-models/*.pkl --output-folder output-folder

path-to-models/*.pkl替换为SMPL_NEUTRAL.pkl的路径。

缺什么库就pip install;由于clean_ch.py是python 2.x,因此如果环境是python 3.x则需要简单改动clean_ch.py代码,具体改动:

加了encoding关键字。

然后把output出来的文件复制到GauHuman/assets就好啦!

执行文件修改

把.sh文件修改为.bat,就可以在windows系统上执行了。以train_zju_mocap_refine.sh为例:

train_zju_mocap_refine.bat

@echo off
setlocal enabledelayedexpansion

REM Define sequences
set "SEQUENCES=my_377 my_386 my_387 my_392 my_393 my_394"

REM Loop through sequences
for %%S in (%SEQUENCES%) do (
    set "SEQUENCE=%%S"
    set "dataset=data\zju_mocap_refine\!SEQUENCE!"
    python train.py -s !dataset! --eval --exp_name zju_mocap_refine\!SEQUENCE!_100_pose_correction_lbs_offset_split_clone_merge_prune --motion_offset_flag --smpl_type smpl --actor_gender neutral --iterations 1200
)

endlocal

在终端输入train_zju_mocap_refine.bat就可以执行了!

参考

 GitHub - skhu101/GauHuman: Code for our CVPR'2024 paper "GauHuman: Articulated Gaussian Splatting from Monocular Human Videos"

GitHub - chungyiweng/humannerf: HumanNeRF turns a monocular video of moving people into a 360 free-viewpoint video.

 论文复现--关于单视角动作捕捉工具箱--MMHuman3d的研究(基于Windows10和Linux18.04中配置)-CSDN博客

 【Win11】在Windows下编译安装KNN_CUDA - 知乎

### GraspNet 在 Windows 系统上的复现方法和兼容性 #### 一、环境准备 对于希望在Windows系统复现GraspNet的研究者来说,首要任务是创建一个适合的开发环境。尽管大多数深度学习框架和库更倾向于Linux操作系统,在Windows环境下也并非不可行。 为了确保顺利安装依赖项以及后续操作的成功率,建议采用Anaconda作为Python环境管理器来构建独立的工作空间[^1]。这不仅简化了包管理和虚拟环境隔离的问题,而且能够更好地处理不同版本间的冲突情况。 #### 二、依赖包安装 通过`pip`命令可以直接获取大部分所需的Python库文件;然而,针对某些特定组件如PointNet++(pointnet2),可能需要额外的操作才能完成其编译与部署过程。考虑到Windows平台上CMake等工具链的支持状况,推荐先参照官方文档说明调整本地设置后再尝试执行如下指令: ```bash cd path\to\your\cloned_repo\pointnet2 python setup.py install ``` 值得注意的是,由于硬件加速需求的存在(特别是当使用NVIDIA GPU时),还需确认已正确设置了CUDA Toolkit及相关驱动程序,并验证PyTorch能否识别到可用设备[^2]。 #### 三、API接口配置与其他准备工作 一旦上述基础工作完成后,则可继续按照项目指南中的指示依次进行graspnetAPI的安装、标签生成、预训练模型下载等一系列步骤。虽然原生教程主要围绕Ubuntu展开描述,但在遵循相同逻辑的前提下适当修改路径表达方式通常也能适用于Windows场景下[^3]。 不过需要注意的是,部分脚本可能会因为跨平台差异而出现问题——比如文件分隔符的不同或是shell内置函数的行为变化。因此,在遇到困难时查阅相关社区资源或寻求替代方案将是十分必要的。 综上所述,理论上讲GraspNet是可以被移植至Windows系统的,只不过实际过程中或许会面临更多挑战。如果条件允许的话,考虑搭建双系统或者借助WSL (Windows Subsystem for Linux) 来辅助开发也不失为一种有效途径。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值