自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(12)
  • 收藏
  • 关注

原创 windows安装pytorch3D cuda12.1 (2024.12)

4.2 以管理员身份运行编辑器(Visual Studio Code 2019)4.在执行安装代码:python setup.py install 前参考博主。再python setup.py install 成功了。检查当前用户是否有“写入”权限。按钮并授予“完全控制”权限。修改config.h文件。不过在修改时,发现尝试修改。3.下载pytorch3d。2.cub不需要单独安装。

2024-12-23 16:17:35 710

原创 论文笔记:3DGSR

然后,我们可以利用估算出的深度(法线),通过基于点的阿尔法混合(Gao 等人,2023 年)将它们渲染成深度(法线)图。结合SDF细化表面重建的理由:3DGS不能很好的重建表面——没有考虑点之间的几何约束,而这些点确实受到底层几何结构(即表面)的约束,从而导致点噪声。随后,采用深度(法线)一致性损失来将渲染的深度(法线)与从 3D 高斯函数导出的深度对齐。使用一致性损失,将 SDF 的深度(法线)与高斯得出的深度(法线)保持一致,为在高斯未占据的区域完善 SDF 提供额外的监督信号。

2024-12-12 16:35:43 572 1

原创 论文笔记:Triplane Meets Gaussian Splatting

根据图像和初始点云输出隐式特征场,通过位置查询从中解码 3D 高斯属性。它共享类似的transformer架构,通过图像标记从可学习的位置嵌入中解码特征。采用三平面的理由:由于高斯离散、非结构和高维性质,直接学习3D高斯表示面临挑战。混合表示:点云P(N,3) 和 三平面T(3,CHW) 最终特征(三线插值特征串联):ft=隐式三平面场:细化几何形状并编码 3D 高斯属性,例如不透明度和球谐函数。从单视角图像快速重建——基于transformer的三平面高斯表示。随后,3D高斯由MLP解码。

2024-12-12 16:05:27 327 1

原创 论文笔记:Drivable 3D Gaussian Avatars

将点的变形扩展到四面体,变形梯度矩阵J:(E包含定义四面体的三个方向向量)最终传递给光栅器的协方差矩阵:(将变形转移到高斯模型中)--->分配给相交四面体i、并计算重心bi。

2024-11-19 15:56:32 192 1

原创 论文笔记:Deformable 3D Gaussian Splatting for Animatable Human Avatars

高斯被更新时,会被变回标准空间,依次应用两个矩阵的逆。当高斯数量增加时,父索引被传递给新的高斯。根据距离,每1000次迭代更新一次父分配。据表面距离远于阈值的高斯分配给背景。MLP采用高斯 Pi 中心与 SMPL模型的人体关节Jt之间的距离来预测上一步变形的残余细化(变形矩阵Dr)。(1)根据父级(SMPL顶点)变形。比较给定姿势和标准姿势的网格,得到顶点变形矩阵Dt,根据该矩阵变形高斯。人类——使用SMPL生成参数化网格,每个网格面中心作为初始化高斯,并分配好父索引i和表面法线n。

2024-11-19 15:03:50 187 1

原创 论文笔记:GoMAvatar

GoMAvatar:使用网格上高斯从单目视频进行高效的可动画人体建模。

2024-09-27 13:01:02 347 1

原创 论文笔记:3DGS-Avatar

3DGS-Avatar:通过可变形 3D 高斯溅射实现动画化身。

2024-09-24 16:43:03 1030 1

原创 论文笔记:SplatArmor

NeRF大多会执行反向蒙皮变形以进行规范化,由于射线上的点位于观察空间,会产生模糊的多重解。从这个粗略优化的网格的表面采样 20000 个点,并将相关的面颜色作为高斯分布。输入的是位置编码和姿态特征(SMPL模型使用的,因为姿态参数与空间坐标都有低频偏差。给定一组图像和对应的前景mask、对应的SMPL姿势参数以及初始SMPL形状参数。恢复SMPL形状参数,每顶点的变形D,每帧的身体姿态和相机外参,以及一组高斯函数。恢复粗糙的 SMPL+D (每个顶点的偏移矩阵 D)网格和每个面的颜色。

2024-09-22 21:37:29 361 2

原创 论文笔记:HUGS

这是一种通过将可变形模型引入高斯 Splatting 框架来合成嵌入场景中的人体的新视图和新姿势的新方法。2.提出了一个变形模型,包括:1)在标准空间预测人类高斯的均值、旋转、缩放来适应身体形状;使用给定的关节配置对标准姿势的人类高斯进行处理,再与场景高斯结合splat。场景高斯由COLMAP的sfm点云初始化的。2.通过使用 GNARF和 AG3D等生成方法先学习人体姿势的外观,或通过从图像扩散模型中提取。1.实现嵌入场景中的人类的表达。最终的损失函数:前三个由渲染图像与真实图像比较得到。

2024-09-13 15:55:57 390 3

原创 论文笔记:GaussianBody

基本的结构还是不变:以SMPL顶点初始化3D高斯->利用SMPL模型中的顶点变换将3D高斯变形到姿势空间->Splatting过程。

2024-09-10 19:33:34 293 1

原创 论文笔记:GauHuman

基于gaussian splatting的人体三维重建大致可以分为三个步骤:1.得到初始化高斯2.对高斯属性包括位置、旋转、颜色等优化(对变形的处理)3.Splatting过程优化GauHuman。

2024-09-06 13:26:13 1055 1

原创 windows系统复现gauhuman

对CVPR 2024 GauHuman论文代码复现windows

2024-04-12 16:10:01 2147 6

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除