创新点:
1.实现嵌入场景中的人类的表达。(对场景和人类都重建)
2.提出了一个变形模型,包括:1)在标准空间预测人类高斯的均值、旋转、缩放来适应身体形状;2)在姿势变形时预测LBS权重(顶点变换)。
人类高斯变形模型:
以SMPL顶点初始高斯均值(中心),在该三维坐标进行插值计算,得到三个特征向量,
,
。特征向量作为输入,通过3个MLP。
1.外观MLP
:
输出第i个高斯的RGB和不透明度;
2.几何MLP
:
输出中心位置的偏移量、旋转矩阵
、三轴的缩放
;
3.变形MLP
:
输出该高斯的LBS权重;
应用L2损失,确保预测的LBS权重与从SMPL获得的一致:
最终的损失函数:前三个由渲染图像与真实图像比较得到。
人类和场景高斯联合:
使用给定的关节配置对标准姿势的人类高斯进行处理,再与场景高斯结合splat。场景高斯由COLMAP的sfm点云初始化的。
Conclusion and Limitations
训练集:NeuMan、ZJU_MoCap
这是一种通过将可变形模型引入高斯 Splatting 框架来合成嵌入场景中的人体的新视图和新姿势的新方法。HUGS比NeuMan、Vid2avatar快很多,并且渲染质量指标PSNR、SSIM 和 LPIPS也被提高。
未来工作:1.无法捕捉宽松服装变形——对非线性服装变形建模;
2.通过使用 GNARF和 AG3D等生成方法先学习人体姿势的外观,或通过从图像扩散模型中提取。