在上面无向图,要求从点A到点D的最短路径, 每 相邻2点之间距离已标注在路径之间,如点A、B之间距离为2。
解决上面的问题,这里我们采用基于贪心算法的Dijstra算法,当然也有其他的算法可以解决,如动态规划等。
(Dijkstra)算法思想
按路径长度递增次序产生最短路径算法:
把V分成两组:
(1)S:已求出最短路径的顶点的集合
(2)V-S=T:尚未确定最短路径的顶点集合
将T中顶点按最短路径递增的次序加入到S中
保证:1)从源点V0到S中各顶点的最短路径长度都不大于 从V0到T中任何顶点的最短路径长度
2)每个顶点对应一个距离值
S中顶点:从V0到此顶点的最短路径长度
T中顶点:从V0到此顶点的只包括S中顶点作中间 顶点的最短路径长度
依据:可以证明V0到T中顶点Vk的最短路径,或是从V0到Vk的 直接路径的权值;或是从V0经S中顶点到Vk的路径权值之和
步骤 | S集合中 | U集合中 |
---|---|---|
1 | 选入A,此时S={A},此时最短路径A->A=0,以A为中间点,从A开始找 | U={B,C,D,E,F,G,H}, A->B=2, A->G=6, A->U中其他顶点=∞ 发现A->B=2距离最短 |
2 | 选入B,此时S={A,B},此时最短路径A->A=0,A->B=2,以B为中间点,从B开始找 | U={C,D,E,F,G,H}, A->B->E=4, A->G=6, A->B->C=9 A->U中其他顶点=∞ 发现A->B->E=4距离最短 |
3 | 选入E,此时S={A,B,E},此时最短路径A->A=0,A->B=2, A->B->E=4,以E为中间点,从E开始找 | U={C,D,F,G,H}, A->B->E->G=5(比上面第一步中A->G=6要短),此时到G的距离为A->B->E->G=5, A->B->C=9, A->B->E->F=6, A->U中其他顶点=∞ 发现A->B->E->G=5距离最短 |
4 | 选入G,此时S={A,B,E,G},此时最短路径A->A=0,A->B=2, A->B->E=4, A->B->E->G=5,以G为中间点,从G开始找 | U={C,D,F,H}, A->B->E->G->H=9, A->B->C=9, A->B->E->F=6, A->U中其他顶点=∞ 发现A->B->E->F=6距离最短 |
5 | 选入F,此时S={A,B,E,G,F},此时最短路径A->A=0,A->B=2,A->B->E=4, A->B->E->G=5,A->B->E->F=6,以F为中间点,从F开始找 | U={C,D,H}, A->B->E->F->H=8(比上面第四步中A->B->E->G->H=9要短),此时到H的距离为A->B->E->F->H=8, A->B->E->F->C=9 (与上面第2步A->B->C=9相等), A->U中其他顶点=∞ 发现A->B->E->F->H=8距离最短 |
6 | 选入H,此时S={A,B,E,G,F,H},此时最短路径A->A=0,A->B=2,A->B->E=4, A->B->E->G=5,A->B->E->F=6, A->B->E->F->H=8,以H为中间点,从H开始找 | U={C,D}, A->B->E->F->H->D=10, A->B->E->F->C=9 (与上面第2步A->B->C=9相等), A->U中其他顶点=∞ 发现A->B->C=8距离最短 |
7 | 选入C,此时S={A,B,E,G,F,H,C},此时最短路径A->A=0,A->B=2,A->B->E=4, A->B->E->G=5,A->B->E->F=6, A->B->E->F->H=8,A->B->C=9,以C为中间点,从C开始找 | U={D}, A->B->E->F->H->D=10, A->B->C->D=12(A->B->E->F-C->D=12), 发现A->B->E->F->H->D=10距离最短 |
8 | 选入D,此时S={A,B,E,G,F,H,C,D}, 此时最短路径A->A=0,A->B=2,A->B->E=4, A->B->E->G=5,A->B->E->F=6, A->B->E->F->H=8, A->B->E->F->H->D=10,以D为中间点,从D开始找 | U中集合已空,查找完毕 |