目录
1.二维基础图形
x <- rnorm(100)
y <- rnorm(100)
plot(x, y, xlab = "x",
ylab = "y",
main = "Plot")
2.1三维图像
x <- seq(-pi, pi, length = 100)
y <- seq(-pi, 2*pi, length = 100)
f <- outer(x, y, function(x, y) sin(y) / (1 + x^2))
contour(x, y, f)
contour(x, y, f, nlevels = 45, add = T)
2.2计算了矩阵 f 与其转置矩阵的差除以2的结果,存储在矩阵 fa 中,即 fa = (f - t(f)) / 2。然后使用 contour() 函数绘制了矩阵 fa 的轮廓图,nlevels 参数指定轮廓线的数量为15。
fa <- (f - t(f)) / 2
contour(x, y, fa, nlevels = 15)
2.3着色图像
image(x, y, fa)
2.4.1三维正面图
persp(x, y, fa)
2.4.2旋转30度
2.4.3旋转30度加虚线
persp(x, y, fa, theta = 30, phi = 20)
2.5假定变量名称是数据的一部分,因此已将它们包含在第一行中。该数据集还包括一些缺失的观测值,用问号表示。缺失值在实际数据集中很常见。在函数中使用选项 (或 ) 表示文件的第一行包含变量名称,使用该选项表示每当它看到特定字符或一组字符(如问号)时,都应将其视为数据矩阵的缺失元素
Auto <- read.table("Auto.data", header = T, na.strings = "?", stringsAsFactors = T)
View(Auto)
2.6 删除含缺失值的行
Auto <- na.omit(Auto)
dim(Auto)
要引用变量,我们1.必须键入数据集和用符号连接的变量名称。2.或者,我们可以使用该函数来告知该数据框中的变量是否按名称可用。
1.
plot(Auto$cylinders, Auto$mpg)
2.
attach(Auto)
该变量存储为数值向量,因此将其视为定量变量。然而,由于 只有少量的可能值,因此可能更愿意将其视为定性变量。该函数将定量变量转换为定性变量。cylinders
R
cylinders
as.factor()
cylinders <- as.factor(cylinders)
如果在x轴上绘制的变量是定性的,则该函数将自动生成箱线图。像往常一样,可以指定许多选项来自定义绘图。plot()
plot(cylinders, mpg, col = "red")
2.7水平放置
plot(cylinders, mpg, col = "red", varwidth = T,
horizontal = T)
2.8 直方图
hist(mpg, col = 2, breaks = 15)
2.9散点图
pairs(Auto)
pairs(
~ mpg + displacement + horsepower + weight + acceleration,
data = Auto
)
2.10描述性统计分析
summary(Auto)