【TACA-2023-4-Problem4】

TACA.2023.4-Problem4

题目简化(只展示核心部分):

∫ − ∞ + ∞ d x x 4 + x 2 + 1 \int_{-\infty}^{+\infty}\frac{\mathrm{d}x}{x^4+x^2+1} +x4+x2+1dx

停下稍加思考,然后在文章中跳步到自己卡住的地方。
如果一遍做对,请用任何手段联系作者并声明身份(膜拜大佬)

今天就教大家怎么从微积分入门到解出清华强基题目

前置知识:这些就够了

  • ∫ f ′ ( x ) d x = f ( x ) + C \int f'(x)\mathrm{d}x=f(x)+C f(x)dx=f(x)+C
  • ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_{a}^{b} f(x)\mathrm{d}x=F(b)-F(a) abf(x)dx=F(b)F(a)
  • ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv
  • ( u v ) ′ = u ′ v − u v ′ v 2 (\frac{u}{v})'=\frac{u'v-uv'}{v^2} (vu)=v2uvuv
  • tan ⁡ x = sin ⁡ x cos ⁡ x \tan x=\frac{\sin x}{\cos x} tanx=cosxsinx
  • sin ⁡ ′ ′ ′ ′ x = cos ⁡ ′ ′ ′ x = − sin ⁡ ′ ′ x = − cos ⁡ ′ x = sin ⁡ x \sin'''' x=\cos''' x=-\sin'' x=-\cos' x=\sin x sin′′′′x=cos′′′x=sin′′x=cosx=sinx(三角函数求导循环)
  • ∫ f ( x ) d ( g ( x ) ) = ∫ f ( x ) g ′ ( x ) d x \int f(x)\mathrm{d}(g(x))=\int f(x)g'(x)\mathrm{d}x f(x)d(g(x))=f(x)g(x)dx(反之亦然)
    //作者将假设你学过以上内容及其前置知识,请保证按照拓扑序学习!

剩下全部,就交给我吧!

逆函数(or 反函数)

首先我们给出我们要证明的公式:

∫ 1 x 2 + 1 d x = arctan ⁡ x + C \int \frac{1}{x^2+1}dx=\arctan x+C x2+11dx=arctanx+C

其中, arctan ⁡ \arctan arctan是反三角函数中的反正切函数,其还可以表示为 tan ⁡ − 1 x \tan^{-1}x tan1x

首先,我们要知道什么是逆函数。
感性的,对于一个函数,如果它的每个因变量只能由一个自变量产生,那么我们就能构造出一个函数,使得将原来函数由某个自变量得到的因变量带入这个函数的自变量时,求出来的因变量是原来函数带进去的自变量。

通俗的,逆函数就是逆运算,就像破译密码一样,根据算出来的密文倒推出明文。

理性的,定义 f ( x ) f(x) f(x)的逆函数为 f − 1 ( x ) f^{-1}(x) f1(x),
当且仅当: f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x
显然,逆函数是相互的, f ( f − 1 ( x ) ) = x f(f^{-1}(x))=x f(f1(x))=x
这好证啊:
f ( f − 1 ( f ( x ) ) ) = f ( x ) f(f^{-1}(f(x)))=f(x) f(f1(f(x)))=f(x)
f ( x ) = f ( x ) f(x)=f(x) f(x)=f(x)
把f(x)当做一个自变量,显然么?
当然聪明的你发现问题了: f − 1 ( x ) f^{-1}(x) f1(x)的定义域仅存在于 f ( x ) f(x) f(x)的值域中。

okok我想大家懂了逆函数是肾么了吧。。。
那还是举个荔枝:
大家都知道,我们要是知道 x 2 x^2 x2的值,想知道 x x x等于多少,就要用开平方这个运算,其值为 ± x 2 \pm \sqrt{x^2} ±x2

但显然这不是个函数,所以可以理解为 f ( x ) = x 2 ( x ∈ R ) f(x)=x^2( x\in \R) f(x)=x2(xR)是没有逆函数的。

但是,当我们龟腚 f ( x ) = x 2 f(x)=x^2 f(x)=x2的取值范围为 x ∈ [ 0 , + ∞ ) x\in [0,+\infty) x[0,+)时,函数就变得一一对应了,因为此时它的逆函数是 f − 1 ( x ) = x f^{-1}(x)=\sqrt{x} f1(x)=x ,而 x \sqrt{x} x 的值域刚好(明明本来就)是 [ 0 , + ∞ ) [0,+\infty) [0,+)

对于每对逆函数,有个显然的定理:
证明: f ( x ) f(x) f(x) f − 1 ( x ) f^{-1}(x) f1(x)关于直线 y = x y=x y=x对称

f ( x ) f(x) f(x)上的点,可以表示为 ( x , f ( x ) ) (x,f(x)) (x,f(x))
f − 1 ( x ) f^{-1}(x) f1(x)上的点,可以表示为 ( x , f − 1 ( x ) ) (x,f^{-1}(x)) (x,f1(x))
代入 f ( x ) f(x) f(x)为自变量,则
f − 1 ( x ) f^{-1}(x) f1(x)上的点,可以表示为 ( f ( x ) , x ) (f(x),x) (f(x),x)
所以, f ( x ) f(x) f(x)图像上的每对点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)都可以在 f − 1 ( x ) f^{-1}(x) f1(x)的图像上找到对应的 ( y 0 , x 0 ) (y_0,x_0) (y0,x0)
到这,您要是还不会——

非常抱歉哈,其实作者也是完全不会的呢~

逆函数求导

好了有了这条性质,我们直接搬出一个公式:

( f − 1 ( x ) ) ′ = 1 f ′ ( f − 1 ( x ) ) (f^{-1}(x))'=\frac{1}{f'(f^{-1}(x))} (f1(x))=f(f1(x))1

此乃逆函数求导公式

对于一些比较抽象的逆函数,如 arctan ⁡ x \arctan x arctanx,我们根本不会导,但是我们知道它原来的函数(也可以说是它的逆函数)的导函数还是能求的,所以我们就要把他的导函数用原来的函数表示出来。

比如某一个 f − 1 ( x ) f^{-1}(x) f1(x)的导函数我们不知道,但是知道 f ′ ( x ) f'(x) f(x),怎么办呢?

比如我们要求 f − 1 ( x ) f^{-1}(x) f1(x) x = x 0 x=x_0 x=x0时的导数,那么其值就等于函数图像在 ( x 0 , f − 1 ( x 0 ) ) (x_0,f^{-1}(x_0)) (x0,f1(x0))这个点的切线的斜率。

但我们不知道啊

好消息是,由于 f ( x ) f(x) f(x) f − 1 ( x ) f^{-1}(x) f1(x)关于直线 y = x y=x y=x对称,我们就知道在 f ( x ) f(x) f(x)图像上在点 ( f − 1 ( x 0 ) , x 0 ) (f^{-1}(x_0),x_0) (f1(x0),x0)处的切线斜率与这条要求的切线斜率互为倒数。

f ( x ) f(x) f(x)图像上在点 ( f − 1 ( x 0 ) , x 0 ) (f^{-1}(x_0),x_0) (f1(x0),x0)处的切线斜率 ,不就是 f ′ ( f − 1 ( x ) ) f'(f^{-1}(x)) f(f1(x))吗?

那这个公式 ( f − 1 ( x ) ) ′ = 1 f ′ ( f − 1 ( x ) ) (f^{-1}(x))'=\frac{1}{f'(f^{-1}(x))} (f1(x))=f(f1(x))1就根本不抽象了吧!

反三角函数求导

醒醒,咱要证的是这个

∫ 1 x 2 + 1 d x = arctan ⁡ x + C \int \frac{1}{x^2+1}dx=\arctan x+C x2+11dx=arctanx+C

首先,两边求导得

1 x 2 + 1 = ( arctan ⁡ x ) ′ \frac{1}{x^2+1}=(\arctan x)' x2+11=(arctanx)

那咱证明 ( arctan ⁡ x ) ′ = 1 x 2 + 1 (\arctan x)'=\frac{1}{x^2+1} (arctanx)=x2+11就行了。

首先套一下公式, ( arctan ⁡ x ) ′ = 1 tan ⁡ ′ ( arctan ⁡ x ) (\arctan x)'=\frac{1}{\tan'(\arctan x)} (arctanx)=tan(arctanx)1

但, tan ⁡ x \tan x tanx的导函数是啥?
不急,小推柿子:
( tan ⁡ x ) ′ = ( sin ⁡ x cos ⁡ x ) ′ = ( sin ⁡ x ) ′ cos ⁡ x − sin ⁡ x ( cos ⁡ x ) ′ cos ⁡ 2 x = 1 cos ⁡ 2 x (\tan x)'=(\frac{\sin x}{\cos x})'=\frac{(\sin x)'\cos x-\sin x(\cos x)'}{\cos^2 x}=\frac{1}{\cos^2 x} (tanx)=(cosxsinx)=cos2x(sinx)cosxsinx(cosx)=cos2x1

那么原式就稍有进展:
( arctan ⁡ x ) ′ = 1 1 cos ⁡ 2 ( arctan ⁡ x ) = cos ⁡ 2 ( arctan ⁡ x ) (\arctan x)'=\frac{1}{\frac{1}{\cos^2 (\arctan x)}}=\cos^2 (\arctan x) (arctanx)=cos2(arctanx)11=cos2(arctanx)

这不是我们想要的……

不着急,我们现在希望遇到一个 tan ⁡ ( arctan ⁡ x ) \tan(\arctan x) tan(arctanx),这样就全消掉了,剩个x。

于是我们祈祷 cos ⁡ \cos cos能变成 tan ⁡ \tan tan

推式子干啥,愣着啊!

cos ⁡ 2 x + sin ⁡ 2 x = 1 … 勾股定理 \cos^2x+\sin^2x=1 \dots勾股定理 cos2x+sin2x=1勾股定理
∵ tan ⁡ x = sin ⁡ x cos ⁡ x \because\tan x=\frac{\sin x}{\cos x} tanx=cosxsinx
∴ cos ⁡ 2 x + tan ⁡ 2 x cos ⁡ 2 x = 1 \therefore\cos^2x+\tan^2 x\cos^2x=1 cos2x+tan2xcos2x=1
∴ ( tan ⁡ 2 x + 1 ) cos ⁡ 2 x = 1 \therefore(\tan^2x+1)\cos^2x=1 (tan2x+1)cos2x=1
∴ cos ⁡ 2 x = 1 tan ⁡ 2 x + 1 \therefore\cos^2x=\frac{1}{\tan^2x+1} cos2x=tan2x+11

他真的,甚至自带平方,我哭死……

所以柿子就推出来了:
( arctan ⁡ x ) ′ = cos ⁡ 2 ( arctan ⁡ x ) = 1 tan ⁡ 2 ( arctan ⁡ x ) + 1 = 1 x 2 + 1 (\arctan x)'=\cos^2 (\arctan x)=\frac{1}{\tan^2(\arctan x)+1}=\frac{1}{x^2+1} (arctanx)=cos2(arctanx)=tan2(arctanx)+11=x2+11

Q . E . D Q.E.D Q.E.D!

这条公式,
∫ 1 x 2 + 1 d x = arctan ⁡ x + C \int \frac{1}{x^2+1}dx=\arctan x+C x2+11dx=arctanx+C
就是我们的工具之一了。

基础分式积分——自然对数求导

还是一样,上公式:

∫ 1 x d x = ln ⁡ ( x ) + C \int \frac{1}{x}\mathrm{d}x=\ln(x)+C x1dx=ln(x)+C

我们还是先导开,得到推论 ( ln ⁡ ( x ) ) ′ = 1 x (\ln(x))'=\frac{1}{x} (ln(x))=x1

你会不会和我一样,遇见对数就手足无措?

由于 ln ⁡ x \ln x lnx已经够基本了,我们要求导只能用定义式了。

导数的定义式为:
f ′ ( x ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x + Δ x ) − f ( x ) Δ x f'(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x} f(x)=limΔx0ΔxΔy=limΔx0Δxf(x+Δx)f(x)
(此处以右导数作为演示,就不求左导数了。。。)

于是你迅速地写下了
( ln ⁡ ( x ) ) ′ = lim ⁡ Δ x → 0 ln ⁡ ( x + Δ x ) − ln ⁡ ( x ) Δ x (\ln(x))'=\lim_{\Delta x\to0}\frac{\ln(x+\Delta x)-\ln(x)}{\Delta x} (ln(x))=limΔx0Δxln(x+Δx)ln(x)

可以回去洗洗睡了,你解不出来的

不是抽象,是非常抽象,这解寂寞呢?

不能急,咱可以看一下压箱底的对数公式:

ln ⁡ x − ln ⁡ y = ln ⁡ ( x y ) \ln x-\ln y=\ln(\frac{x}{y}) lnxlny=ln(yx)

哇哇哇

于是你又迅速地写下了
= lim ⁡ Δ x → 0 ln ⁡ ( x + Δ x x ) Δ x =\lim_{\Delta x\to0}\frac{\ln(\frac{x+\Delta x}{x})}{\Delta x} =limΔx0Δxln(xx+Δx)
= lim ⁡ Δ x → 0 ln ⁡ ( 1 + Δ x x ) Δ x =\lim_{\Delta x\to0}\frac{\ln(1+\frac{\Delta x}{x})}{\Delta x} =limΔx0Δxln(1+xΔx)

睡吧睡吧

这时候你又翻到一个公式:

ln ⁡ x a = a ln ⁡ x \ln x^a=a\ln x lnxa=alnx

你未反应过来之际,你同桌抢来了稿纸,迅速写下:

= lim ⁡ Δ x → 0 ( 1 Δ x × ln ⁡ ( 1 + Δ x x ) ) =\lim_{\Delta x\to0}(\frac{1}{\Delta x}\times\ln(1+\frac{\Delta x}{x})) =limΔx0(Δx1×ln(1+xΔx))

= lim ⁡ Δ x → 0 ln ⁡ ( ( 1 + Δ x x ) 1 Δ x ) =\lim_{\Delta x\to0}\ln((1+\frac{\Delta x}{x})^{\frac{1}{\Delta x}}) =limΔx0ln((1+xΔx)Δx1)

你:这位是懂复杂化的

这么晚了你们还不睡吗

数学课代表来了:

= lim ⁡ Δ x → 0 ln ⁡ ( ( ( 1 + Δ x x ) x Δ x ) 1 x ) =\lim_{\Delta x\to0}\ln(((1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}})^{\frac{1}{x}}) =limΔx0ln(((1+xΔx)Δxx)x1)

= lim ⁡ Δ x → 0 1 x ln ⁡ ( ( 1 + Δ x x ) x Δ x ) =\lim_{\Delta x\to0}\frac{1}{x}\ln((1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}) =limΔx0x1ln((1+xΔx)Δxx)

= 1 x lim ⁡ Δ x → 0 ln ⁡ ( ( 1 + Δ x x ) x Δ x ) =\frac{1}{x}\lim_{\Delta x\to0}\ln((1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}) =x1limΔx0ln((1+xΔx)Δxx)

这里显然一步:

= 1 x lim ⁡ x Δ x → ∞ ln ⁡ ( ( 1 + Δ x x ) x Δ x ) =\frac{1}{x}\lim_{\frac{x}{\Delta x}\to\infty}\ln((1+\frac{\Delta x}{x})^{\frac{x}{\Delta x}}) =x1limΔxxln((1+xΔx)Δxx)

其中, e e e(自然对数的底数)的定义式是:
lim ⁡ x → ∞ ( 1 + 1 x ) x \lim_{x\to \infty}(1+\frac{1}{x})^x limx(1+x1)x

那么显然,上式就化出来了:

= 1 x ln ⁡ ( e ) =\frac{1}{x}\ln(e) =x1ln(e)

= 1 x =\frac{1}{x} =x1

既然 ( ln ⁡ ( x ) ) ′ = 1 x (\ln(x))'=\frac{1}{x} (ln(x))=x1

其实吧,准确来说,是 ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln|x|)'=\frac{1}{x} (lnx)=x1

我们又得到了新工具:
∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x}\mathrm{d}x=\ln|x|+C x1dx=lnx+C

前置知识到这里基本就结束了,我们,

进入正题

抄一遍题目:

∫ − ∞ + ∞ d x x 4 + x 2 + 1 \int_{-\infty}^{+\infty}\frac{\mathrm{d}x}{x^4+x^2+1} +x4+x2+1dx

首先四次方显然不可做,想办法裂项降幂。

其中分母: x 4 + x 2 + 1 = x 4 + 2 x 2 + 1 − x 2 = ( x 2 + 1 ) − x 2 = ( x 2 + x + 1 ) ( x 2 − x + 1 ) x^4+x^2+1=x^4+2x^2+1-x^2=(x^2+1)-x^2=(x^2+x+1)(x^2-x+1) x4+x2+1=x4+2x2+1x2=(x2+1)x2=(x2+x+1)(x2x+1)

什么,你说这几步《因式分解》想不来?

哈哈哈哈我们初中数学老师讲过

你小可爱的就放表情包都不愿意放几张逆函数求导图像解析?
(555我错了)

OK可以继续了:
∫ − ∞ + ∞ d x x 4 + x 2 + 1 \int_{-\infty}^{+\infty}\frac{\mathrm{d}x}{x^4+x^2+1} +x4+x2+1dx

= ∫ − ∞ + ∞ 1 x 4 + x 2 + 1 d x =\int_{-\infty}^{+\infty}\frac{1}{x^4+x^2+1}\mathrm{d}x =+x4+x2+11dx

= ∫ − ∞ + ∞ 1 ( x 2 + x + 1 ) ( x 2 − x + 1 ) d x =\int_{-\infty}^{+\infty}\frac{1}{(x^2+x+1)(x^2-x+1)}\mathrm{d}x =+(x2+x+1)(x2x+1)1dx

= ∫ − ∞ + ∞ 1 2 x × 2 x ( x 2 − x + 1 ) ( x 2 + x + 1 ) d x =\int_{-\infty}^{+\infty}\frac{1}{2x}\times\frac{2x}{(x^2-x+1)(x^2+x+1)}\mathrm{d}x =+2x1×(x2x+1)(x2+x+1)2xdx

= ∫ − ∞ + ∞ 1 2 x × x 2 + x + 1 − ( x 2 − x + 1 ) ( x 2 − x + 1 ) ( x 2 + x + 1 ) d x =\int_{-\infty}^{+\infty}\frac{1}{2x}\times\frac{x^2+x+1-(x^2-x+1)}{(x^2-x+1)(x^2+x+1)}\mathrm{d}x =+2x1×(x2x+1)(x2+x+1)x2+x+1(x2x+1)dx

= ∫ − ∞ + ∞ 1 2 x × ( x 2 + x + 1 ( x 2 − x + 1 ) ( x 2 + x + 1 ) − x 2 − x + 1 ( x 2 − x + 1 ) ( x 2 + x + 1 ) ) d x =\int_{-\infty}^{+\infty}\frac{1}{2x}\times(\frac{x^2+x+1}{(x^2-x+1)(x^2+x+1)}-\frac{x^2-x+1}{(x^2-x+1)(x^2+x+1)})\mathrm{d}x =+2x1×((x2x+1)(x2+x+1)x2+x+1(x2x+1)(x2+x+1)x2x+1)dx

= ∫ − ∞ + ∞ 1 2 x × ( 1 x 2 − x + 1 − 1 x 2 + x + 1 ) d x =\int_{-\infty}^{+\infty}\frac{1}{2x}\times(\frac{1}{x^2-x+1}-\frac{1}{x^2+x+1})\mathrm{d}x =+2x1×(x2x+11x2+x+11)dx

= ∫ − ∞ + ∞ 1 2 x × 1 x 2 − x + 1 − 1 2 x × 1 x 2 + x + 1 d x =\int_{-\infty}^{+\infty}\frac{1}{2x}\times\frac{1}{x^2-x+1}-\frac{1}{2x}\times\frac{1}{x^2+x+1}\mathrm{d}x =+2x1×x2x+112x1×x2+x+11dx

现在成3次了。

还能拆!

= 1 2 ∫ − ∞ + ∞ 1 x × 1 x 2 − x + 1 − 1 x × 1 x 2 + x + 1 d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1}{x}\times\frac{1}{x^2-x+1}-\frac{1}{x}\times\frac{1}{x^2+x+1}\mathrm{d}x =21+x1×x2x+11x1×x2+x+11dx

= 1 2 ∫ − ∞ + ∞ 1 x ( x 2 − x + 1 ) − 1 x ( x 2 + x + 1 ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1}{x(x^2-x+1)}-\frac{1}{x(x^2+x+1)}\mathrm{d}x =21+x(x2x+1)1x(x2+x+1)1dx

= 1 2 ∫ − ∞ + ∞ x 2 − x + 1 − x ( x − 1 ) x ( x 2 − x + 1 ) − x 2 + x + 1 − x ( x + 1 ) x ( x 2 + x + 1 ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{x^2-x+1-x(x-1)}{x(x^2-x+1)}-\frac{x^2+x+1-x(x+1)}{x(x^2+x+1)}\mathrm{d}x =21+x(x2x+1)x2x+1x(x1)x(x2+x+1)x2+x+1x(x+1)dx

= 1 2 ∫ − ∞ + ∞ x 2 − x + 1 x ( x 2 − x + 1 ) − x ( x − 1 ) x ( x 2 − x + 1 ) − x 2 + x + 1 x ( x 2 + x + 1 ) + x ( x + 1 ) x ( x 2 + x + 1 ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{x^2-x+1}{x(x^2-x+1)}-\frac{x(x-1)}{x(x^2-x+1)}-\frac{x^2+x+1}{x(x^2+x+1)}+\frac{x(x+1)}{x(x^2+x+1)}\mathrm{d}x =21+x(x2x+1)x2x+1x(x2x+1)x(x1)x(x2+x+1)x2+x+1+x(x2+x+1)x(x+1)dx

= 1 2 ∫ − ∞ + ∞ 1 x − x − 1 x 2 − x + 1 − 1 x + x + 1 x 2 + x + 1 d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1}{x}-\frac{x-1}{x^2-x+1}-\frac{1}{x}+\frac{x+1}{x^2+x+1}\mathrm{d}x =21+x1x2x+1x1x1+x2+x+1x+1dx

= 1 2 ∫ − ∞ + ∞ x + 1 x 2 + x + 1 − x − 1 x 2 − x + 1 d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}\mathrm{d}x =21+x2+x+1x+1x2x+1x1dx

我说变成了一次你信吗,
别信,这是分式。

到这一步我们既然好不容易拆开了

那就彻底拆开!

= 1 2 ∫ − ∞ + ∞ x + 1 x 2 + x + 1 d x − 1 2 ∫ − ∞ + ∞ x − 1 x 2 − x + 1 d x =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{x+1}{x^2+x+1}\mathrm{d}x-\frac{1}{2}\int_{-\infty}^{+\infty}\frac{x-1}{x^2-x+1}\mathrm{d}x =21+x2+x+1x+1dx21+x2x+1x1dx

这时候用一个小trick:

f ( x ) = x + 1 x 2 + x + 1 , g ( x ) = x − 1 x 2 − x + 1 f(x)=\frac{x+1}{x^2+x+1},g(x)=\frac{x-1}{x^2-x+1} f(x)=x2+x+1x+1,g(x)=x2x+1x1

那么显然 g ( x ) = − f ( − x ) g(x)=-f(-x) g(x)=f(x)

不是吧这不会还要证吧。。。

− f ( − x ) = − ( − x ) + 1 ( − x ) 2 + ( − x ) + 1 = − − ( x − 1 ) x 2 − x + 1 = x − 1 x 2 − x + 1 = g ( x ) -f(-x)=-\frac{(-x)+1}{(-x)^2+(-x)+1}=-\frac{-(x-1)}{x^2-x+1}=\frac{x-1}{x^2-x+1}=g(x) f(x)=(x)2+(x)+1(x)+1=x2x+1(x1)=x2x+1x1=g(x)

证得我都嫌丢脸

所以上式变成:

= 1 2 ∫ − ∞ + ∞ f ( x ) d x − 1 2 ∫ − ∞ + ∞ g ( x ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}f(x)\mathrm{d}x-\frac{1}{2}\int_{-\infty}^{+\infty}g(x)\mathrm{d}x =21+f(x)dx21+g(x)dx

= 1 2 ∫ − ∞ + ∞ f ( x ) d x − 1 2 ∫ − ∞ + ∞ − f ( − x ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}f(x)\mathrm{d}x-\frac{1}{2}\int_{-\infty}^{+\infty}-f(-x)\mathrm{d}x =21+f(x)dx21+f(x)dx

= 1 2 ∫ − ∞ + ∞ f ( x ) d x + 1 2 ∫ − ∞ + ∞ f ( − x ) d x =\frac{1}{2}\int_{-\infty}^{+\infty}f(x)\mathrm{d}x+\frac{1}{2}\int_{-\infty}^{+\infty}f(-x)\mathrm{d}x =21+f(x)dx+21+f(x)dx

我们到这里稍停一下,这个式子会不会能合并?

我们考虑定积分的意义,就是曲线下与 x x x轴形成的面积。

f ( − x ) f(-x) f(x)显然只是 f ( x ) f(x) f(x)关于 y y y轴对称了一下,其与 x x x轴形成的面积不变。

我们初步严谨的感性证明了 ∫ − ∞ + ∞ f ( x ) d x = ∫ − ∞ + ∞ f ( − x ) d x \int_{-\infty}^{+\infty}f(x)\mathrm{d}x=\int_{-\infty}^{+\infty}f(-x)\mathrm{d}x +f(x)dx=+f(x)dx

那我们推一推柿子:
令 u = − x 令u=-x u=x
∫ − ∞ + ∞ f ( − x ) d x \int_{-\infty}^{+\infty}f(-x)\mathrm{d}x +f(x)dx

= ∫ + ∞ − ∞ f ( u ) d ( − u ) =\int_{+\infty}^{-\infty}f(u)\mathrm{d}(-u) =+f(u)d(u)

= ∫ + ∞ − ∞ − f ( u ) d u =\int_{+\infty}^{-\infty}-f(u)\mathrm{d}u =+f(u)du

= ∫ − ∞ + ∞ f ( u ) d u =\int_{-\infty}^{+\infty}f(u)\mathrm{d}u =+f(u)du

不戳不戳~

既然这样,上面柿子变成了下面这般:

= ∫ − ∞ + ∞ f ( x ) d x =\int_{-\infty}^{+\infty}f(x)\mathrm{d}x =+f(x)dx

= ∫ − ∞ + ∞ x + 1 x 2 + x + 1 d x =\int_{-\infty}^{+\infty}\frac{x+1}{x^2+x+1}\mathrm{d}x =+x2+x+1x+1dx

至此为止,我们已经完成了从 ∫ − ∞ + ∞ 1 x 4 + x 2 + 1 d x \int_{-\infty}^{+\infty}\frac{1}{x^4+x^2+1}\mathrm{d}x +x4+x2+11dx ∫ − ∞ + ∞ x + 1 x 2 + x + 1 d x \int_{-\infty}^{+\infty}\frac{x+1}{x^2+x+1}\mathrm{d}x +x2+x+1x+1dx的蜕变。

记得那两个公式吗?

∫ 1 x 2 + 1 d x = arctan ⁡ x + C … ( 1 ) \int \frac{1}{x^2+1}dx=\arctan x+C\dots(1) x2+11dx=arctanx+C(1)

∫ 1 x d x = ln ⁡ ∣ x ∣ + C … ( 2 ) \int \frac{1}{x}\mathrm{d}x=\ln|x|+C\dots(2) x1dx=lnx+C(2)

观察公式 ( 1 ) (1) (1),其分母有二次项和零次项,而我们现在的分母还有一次项,所以我们要丧心病狂的换元:

对于 x + 1 x 2 + x + 1 : 对于\frac{x+1}{x^2+x+1}: 对于x2+x+1x+1

配方得 x + 1 ( x + 1 2 ) 2 + 3 4 配方得\frac{x+1}{(x+\frac{1}{2})^2+\frac{3}{4}} 配方得(x+21)2+43x+1

记 x + 1 2 = u 记x+\frac{1}{2}=u x+21=u

x + 1 ( x + 1 2 ) 2 + 3 4 = u + 1 2 u 2 + 3 4 \frac{x+1}{(x+\frac{1}{2})^2+\frac{3}{4}}=\frac{u+\frac{1}{2}}{u^2+\frac{3}{4}} (x+21)2+43x+1=u2+43u+21

但但但,常数项不是 1 1 1了(/kk)

不要紧,强行变成 1 1 1:

u + 1 2 u 2 + 3 4 = 4 3 ( u + 1 2 ) 4 3 ( u 2 + 3 4 ) = 4 3 u + 2 3 4 3 u 2 + 1 \frac{u+\frac{1}{2}}{u^2+\frac{3}{4}}=\frac{\frac{4}{3}(u+\frac{1}{2})}{\frac{4}{3}(u^2+\frac{3}{4})}=\frac{\frac{4}{3}u+\frac{2}{3}}{\frac{4}{3}u^2+1} u2+43u+21=34(u2+43)34(u+21)=34u2+134u+32

记 2 3 3 u = v ,则 v = 2 3 3 ( x + 1 2 ) = 2 3 3 x + 3 3 记\frac{2\sqrt{3}}{3}u=v,则v=\frac{2\sqrt{3}}{3}(x+\frac{1}{2})=\frac{2\sqrt{3}}{3}x+\frac{\sqrt{3}}{3} 323 u=v,则v=323 (x+21)=323 x+33

4 3 u + 2 3 4 3 u 2 + 1 = 2 3 3 v + 2 3 v 2 + 1 \frac{\frac{4}{3}u+\frac{2}{3}}{\frac{4}{3}u^2+1}=\frac{\frac{2\sqrt{3}}{3}v+\frac{2}{3}}{v^2+1} 34u2+134u+32=v2+1323 v+32

这样,分母就被我们调教好了。

那就赶紧积吧。。
。。。
将上述换元代入积分: 将上述换元代入积分: 将上述换元代入积分:
∫ − ∞ + ∞ x + 1 x 2 + x + 1 d x = ∫ − ∞ + ∞ 2 3 3 v + 2 3 v 2 + 1 d x \int_{-\infty}^{+\infty}\frac{x+1}{x^2+x+1}\mathrm{d}x=\int_{-\infty}^{+\infty}\frac{\frac{2\sqrt{3}}{3}v+\frac{2}{3}}{v^2+1}\mathrm{d}x +x2+x+1x+1dx=+v2+1323 v+32dx

= ∫ − ∞ + ∞ 3 2 3 × 2 3 3 v + 2 3 v 2 + 1 d ( 2 3 3 x + 3 3 ) =\int_{-\infty}^{+\infty}\frac{3}{2\sqrt{3}}\times\frac{\frac{2\sqrt{3}}{3}v+\frac{2}{3}}{v^2+1}\mathrm{d}(\frac{2\sqrt{3}}{3}x+\frac{\sqrt{3}}{3}) =+23 3×v2+1323 v+32d(323 x+33 )

= ∫ − ∞ + ∞ v + 3 3 v 2 + 1 d v =\int_{-\infty}^{+\infty}\frac{v+\frac{\sqrt{3}}{3}}{v^2+1}\mathrm{d}v =+v2+1v+33 dv

由于 v v v x x x的线性变换,所以积分的范围还是整个实数域

到这一步,就可以再裂开了:

= ∫ − ∞ + ∞ v + 3 3 v 2 + 1 d v =\int_{-\infty}^{+\infty}\frac{v+\frac{\sqrt{3}}{3}}{v^2+1}\mathrm{d}v =+v2+1v+33 dv

= ∫ − ∞ + ∞ v v 2 + 1 d v + ∫ − ∞ + ∞ 3 3 v 2 + 1 d v =\int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v+\int_{-\infty}^{+\infty}\frac{\frac{\sqrt{3}}{3}}{v^2+1}\mathrm{d}v =+v2+1vdv++v2+133 dv

= ∫ − ∞ + ∞ v v 2 + 1 d v + 3 3 ∫ − ∞ + ∞ 1 v 2 + 1 d v =\int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v+\frac{\sqrt{3}}{3}\int_{-\infty}^{+\infty}\frac{1}{v^2+1}\mathrm{d}v =+v2+1vdv+33 +v2+11dv

这时候,记 ∫ − ∞ + ∞ v v 2 + 1 d v \int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v +v2+1vdv α \alpha α,记 3 3 ∫ − ∞ + ∞ 1 v 2 + 1 d v \frac{\sqrt{3}}{3}\int_{-\infty}^{+\infty}\frac{1}{v^2+1}\mathrm{d}v 33 +v2+11dv β \beta β,分别进行求解:

对于 ∫ v v 2 + 1 d v \int \frac{v}{v^2+1}\mathrm{d}v v2+1vdv略施换元小计:

= 1 2 ∫ 2 v v 2 + 1 d v =\frac{1}{2}\int \frac{2v}{v^2+1}\mathrm{d}v =21v2+12vdv

= 1 2 ∫ 1 v 2 + 1 d ( v 2 + 1 ) =\frac{1}{2}\int \frac{1}{v^2+1}\mathrm{d}(v^2+1) =21v2+11d(v2+1)

令 ω = v 2 + 1 令\omega=v^2+1 ω=v2+1

= 1 2 ∫ 1 ω d ω =\frac{1}{2}\int \frac{1}{\omega}\mathrm{d}\omega =21ω1dω

拿出公式 ( 2 ) (2) (2):

∫ 1 x d x = ln ⁡ ∣ x ∣ + C … ( 怕你忘了 ) \int \frac{1}{x}\mathrm{d}x=\ln|x|+C\dots(怕你忘了) x1dx=lnx+C(怕你忘了)

= 1 2 ln ⁡ ∣ ω ∣ + C =\frac{1}{2}\ln|\omega|+C =21lnω+C

这就是原式的原函数了。

那,直接代入

α = ∫ − ∞ + ∞ v v 2 + 1 d v \alpha=\int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v α=+v2+1vdv

= 1 2 ∫ − ∞ + ∞ 1 ω d ω =\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1}{\omega}\mathrm{d}\omega =21+ω1dω(别问为啥范围不变)

= 1 2 ln ⁡ ∣ + ∞ ∣ − 1 2 ln ⁡ ∣ − ∞ ∣ =\frac{1}{2}\ln|+\infty|-\frac{1}{2}\ln|-\infty| =21ln+∞∣21ln∞∣

= 0 =0 =0

是零!感动555

那再算 β \beta β:

∫ 1 x 2 + 1 d x = arctan ⁡ x + C … ( 真心怕你忘了 ) \int \frac{1}{x^2+1}dx=\arctan x+C\dots(真心怕你忘了) x2+11dx=arctanx+C(真心怕你忘了)

再用公式 ( 1 ) (1) (1)

∫ 1 v 2 + 1 d v = arctan ⁡ v + C \int\frac{1}{v^2+1}\mathrm{d}v=\arctan v+C v2+11dv=arctanv+C

β = 3 3 ∫ − ∞ + ∞ 1 v 2 + 1 d v \beta=\frac{\sqrt{3}}{3}\int_{-\infty}^{+\infty}\frac{1}{v^2+1}\mathrm{d}v β=33 +v2+11dv

= 3 3 ( lim ⁡ x → + ∞ arctan ⁡ ( x ) − lim ⁡ x → − ∞ arctan ⁡ ( x ) ) =\frac{\sqrt{3}}{3}(\lim_{x\to+\infty}\arctan (x)-\lim_{x\to-\infty}\arctan (x)) =33 (limx+arctan(x)limxarctan(x))

其中 lim ⁡ x → + ∞ arctan ⁡ ( x ) \lim_{x\to+\infty}\arctan (x) limx+arctan(x) x x x三角代换成 tan ⁡ θ \tan\theta tanθ

即是求 lim ⁡ tan ⁡ θ → + ∞ arctan ⁡ ( tan ⁡ θ ) \lim_{\tan\theta\to+\infty}\arctan (\tan\theta) limtanθ+arctan(tanθ)

= lim ⁡ ( tan ⁡ θ ) → + ∞ θ =\lim_{(\tan\theta)\to+\infty}\theta =lim(tanθ)+θ

= π 2 =\frac{\pi}{2} =2π

同理, lim ⁡ x → − ∞ arctan ⁡ ( x ) \lim_{x\to-\infty}\arctan (x) limxarctan(x)

= lim ⁡ tan ⁡ θ → − ∞ arctan ⁡ ( tan ⁡ θ ) =\lim_{\tan\theta\to-\infty}\arctan (\tan\theta) =limtanθarctan(tanθ)

= lim ⁡ ( tan ⁡ θ ) → − ∞ θ =\lim_{(\tan\theta)\to-\infty}\theta =lim(tanθ)θ

= − π 2 =-\frac{\pi}{2} =2π

那么 β = 3 3 ( π 2 − ( − π 2 ) ) \beta=\frac{\sqrt{3}}{3}(\frac{\pi}{2}-(-\frac{\pi}{2})) β=33 (2π(2π))

= 3 3 π =\frac{\sqrt{3}}{3}\pi =33 π

so?

∫ − ∞ + ∞ v v 2 + 1 d v + 3 3 ∫ − ∞ + ∞ 1 v 2 + 1 d v = α + β = 0 + 3 3 π = 3 3 π \int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v+\frac{\sqrt{3}}{3}\int_{-\infty}^{+\infty}\frac{1}{v^2+1}\mathrm{d}v=\alpha+\beta=0+\frac{\sqrt{3}}{3}\pi=\frac{\sqrt{3}}{3}\pi +v2+1vdv+33 +v2+11dv=α+β=0+33 π=33 π


这不,答案么?

∫ − ∞ + ∞ d x x 4 + x 2 + 1 = 3 3 π \int_{-\infty}^{+\infty}\frac{\mathrm{d}x}{x^4+x^2+1}=\frac{\sqrt{3}}{3}\pi +x4+x2+1dx=33 π

彩蛋

图解逆函数求导&& ln ⁡ ∣ x ∣ \ln |x| lnx求导的另一种形式方法

已知: ( e x ) ′ = e x (e^x)'=e^x (ex)=ex

我们知道, ln ⁡ \ln ln的定义就是 exp ⁡ \exp exp的逆运算,那么 ln ⁡ x \ln x lnx自然是 e x e^x ex的逆函数了

代入公式:

( ln ⁡ x ) ′ = 1 exp ⁡ ′ ( ln ⁡ x ) (\ln x)'=\frac{1}{\exp'(\ln x)} (lnx)=exp(lnx)1

上图:

在这里插入图片描述要求 A A A点处的导数,只要求 A ′ A' A点处的倒数就好了

公式啥的就随便推推乐

( ln ⁡ x ) ′ = 1 exp ⁡ ′ ( ln ⁡ x ) = 1 exp ⁡ ( ln ⁡ x ) = 1 x (\ln x)'=\frac{1}{\exp'(\ln x)}=\frac{1}{\exp(\ln x)}=\frac{1}{x} (lnx)=exp(lnx)1=exp(lnx)1=x1

其实上文用定义式推只是想告诉你们求导的根本原理

关于为什么 ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln|x|)'=\frac{1}{x} (lnx)=x1有绝对值

其实,最开始我们推的时候要加一句话

在 x ∈ ( 0 , + ∞ ) 在x\in(0,+\infty) x(0,+)时, ( ln ⁡ x ) ′ = 1 x (\ln x)'=\frac{1}{x} (lnx)=x1

ln ⁡ x \ln x lnx在非正数域没有定义)

但, 1 x \frac{1}{x} x1是奇函数,即 − 1 − x = 1 x -\frac{1}{-x}=\frac{1}{x} x1=x1

我们知道,偶函数的导函数是奇函数

那么它的原函数 F ( x ) = ∫ 1 x d x F(x)=\int \frac{1}{x}\mathrm{d}x F(x)=x1dx一定是个偶函数

也就是说, F ( x ) = F ( − x ) F(x)=F(-x) F(x)=F(x)

由于 1 x \frac{1}{x} x1的定义域是 ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) (-\infty,0)\cup(0,+\infty) (,0)(0,+)

对于 x ∈ ( 0 , + ∞ ) x\in(0,+\infty) x(0,+),其原函数就是 F ( x ) = ln ⁡ x F(x)=\ln x F(x)=lnx

对于 x ∈ ( − ∞ , 0 ) x\in(-\infty,0) x(,0),其原函数是 F ( x ) = F ( − x ) = ln ⁡ − x F(x)=F(-x)=\ln -x F(x)=F(x)=lnx( ln ⁡ \ln ln依旧有定义)

那,对于以 0 0 0分段变为相反数的方法,不就是绝对值吗?

对于 x ∈ ( − ∞ , 0 ) ∪ ( 0 , + ∞ ) x\in(-\infty,0)\cup(0,+\infty) x(,0)(0,+),其原函数是 F ( x ) = F ( ∣ x ∣ ) = ln ⁡ ∣ x ∣ F(x)=F(|x|)=\ln |x| F(x)=F(x)=lnx

这时候原函数的定义域和函数的定义一模一样了,就不用声明定义域了:

∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x}\mathrm{d}x=\ln|x|+C x1dx=lnx+C

两边求导得 ( ln ⁡ ∣ x ∣ ) ′ = 1 x (\ln|x|)'=\frac{1}{x} (lnx)=x1

证明 ∞ 2 = ∞ \infty^2=\infty 2=

首先无穷大分三级:

  • ℵ 0 \alef_0 0零级无穷大:可数集,所有自然数的个数;
  • ℵ 1 \alef_1 1一级无穷大:不可数集,所有实数的个数;
  • ℵ 2 \alef_2 2二级无穷大:不可数集,平面上所有曲线的个数;

ℵ 2 \alef_2 2比较抽象,咱不看了好不好。

对于 ℵ 0 = ℵ 0 2 \alef_0=\alef_0^2 0=02,可以构造一个无穷矩阵:

[ 1 2 3 … 1 2 3 … 1 2 3 … ⋮ ⋮ ⋮ ⋱ ] \begin{bmatrix} 1 & 2 & 3 & \dots\\ 1 & 2 & 3 & \dots\\ 1 & 2 & 3 & \dots\\ \vdots & \vdots & \vdots & \ddots\\ \end{bmatrix} 111222333

显然,这个矩阵中元素的个数就是 ℵ 0 2 \alef_0^2 02

但是这个矩阵我们可以重新编号:

[ 1 2 4 … 3 5 8 … 6 9 13 … ⋮ ⋮ ⋮ ⋱ ] \begin{bmatrix} 1 & 2 & 4 & \dots\\ 3 & 5 & 8 & \dots\\ 6 & 9 & 13 & \dots\\ \vdots & \vdots & \vdots & \ddots\\ \end{bmatrix} 1362594813

按照斜排编号,就会发现 ℵ 0 \alef_0 0就可以把整个矩阵遍历。

既然证明了 ℵ 0 2 = ℵ 0 \alef_0^2=\alef_0 02=0,那 ℵ 0 = 2 ℵ 0 \alef_0=2\alef_0 0=20也就不难了,把矩阵从无限行变为 2 2 2行就行了。

所以,所有无穷大可数集,即元素是可以一个一个数的,就是零阶无穷大。

这时候,我们还可以说有理数的个数也是 ℵ 0 \alef_0 0,因为所有有理数可以被表示成 p q \frac{p}{q} qp,而根据乘法原理, p q \frac{p}{q} qp的个数就等于 p p p的个数乘上 q q q的个数,即 ℵ 0 × ℵ 0 = ℵ 0 2 = ℵ 0 \alef_0\times\alef_0=\alef_0^2=\alef_0 0×0=02=0

但实数就不行了。

我们用反证法,反设 R \R R是个可数集,包含所有实数
言外之意,无法找到一个不在 R \R R的实数。

R = { 1.0000 … , 3.1415926 … , 0.1212563 … , 0.1212563 … , 127.3267346756 … , 878234.23456712564578234563245623456 … , 114514.1919810 … , ⋮ } \R= \{ \\1.0000\dots, \\3.1415926\dots, \\0.1212563\dots, \\0.1212563\dots, \\127.3267346756\dots, \\878234.23456712564578234563245623456\dots, \\114514.1919810\dots, \\ \vdots \\ \} R={1.0000,3.1415926,0.1212563,0.1212563,127.3267346756,878234.23456712564578234563245623456,114514.1919810,}

由于这是可数集,我们一定可以找到一种方法给所有实数编号(别杠,这是反设)

所以我们构造一个实数,使得其小数部分第 i i i位不等于第 i i i个实数的第 i i i位。

那么这个数与集合中的每个数都不同,所以这个数不在这个集合中。

但这个集合包含所有实数。

矛盾!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(数学老师教我们感叹号一定要多)

所以实数集不是可数集,实数不可数,不能用 ℵ 0 \alef_0 0表示他的个数

于是它的个数便是 ℵ 1 \alef_1 1

那怎么证明 ℵ 1 2 = ℵ 1 \alef_1^2=\alef_1 12=1呢?

平面上点的个数就是 ℵ 1 2 \alef_1^2 12,因为其坐标就是 ( a , b ) (a,b) (a,b),而 a a a b b b都分别有 ℵ 1 \alef_1 1个,根据乘法原理平面上点的个数有 ℵ 1 2 \alef_1^2 12个。

我们知道,一个实数的小数位数是可数集

整数位的用上面说的斜排就可以搞定

把小数位都拆成 ℵ 0 \alef_0 0个,所以又得到一个两行的矩阵,斜排编号后按照编号重新写出一个小数部分,于是加上整数位,一个实数二元组映射到了一个实数上。

同样的方式,可证明 ℵ 1 ℵ 0 = ℵ 1 \alef_1^{\alef_0}=\alef_1 10=1

那为什么平面上曲线的个数不能用 ℵ 1 \alef_1 1表示呢?

因为可以把曲线理解为一堆点,这些点的个数是 ℵ 1 \alef_1 1个,而每个点都是一个有 ℵ 1 \alef_1 1中可能的二元组,根据乘法原理,曲线的个数为 ℵ 1 ℵ 1 > ℵ 1 ℵ 0 \alef_1^{\alef_1}>\alef_1^{\alef_0} 11>10

有人要杠了:你这曲线太抽象了吧,甚至根本不一定连续啊!

——我积一下不就连续了?

那我要是要光滑曲线呢?

——我再积一下不就处处光滑可导了?

曲线不一定是函数啊!

——隐函数照样能积啊?

……

所以得到 ℵ 2 = ℵ 1 ℵ 1 \alef_2=\alef_1^{\alef_1} 2=11

还可以根据定义得到 ℵ 1 = ℵ 0 × 1 0 ℵ 0 \alef_1=\alef_0\times 10^{\alef_0} 1=0×100

其实我们有 ℵ 1 2 = ℵ 1 \alef_1^2=\alef_1 12=1就够了

这样,上文中的 ∫ − ∞ + ∞ v v 2 + 1 d v = 1 2 ∫ − ∞ + ∞ 1 ω d ω \int_{-\infty}^{+\infty}\frac{v}{v^2+1}\mathrm{d}v=\frac{1}{2}\int_{-\infty}^{+\infty}\frac{1}{\omega}\mathrm{d}\omega +v2+1vdv=21+ω1dω范围不变就很好解释了。

return 0;

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值