opencv特征匹配

本文介绍了OpenCV中的特征匹配方法,包括Brute-Force蛮力匹配、1对1匹配和k对最佳匹配。此外,还讨论了如何使用cv2.FlannBasedMatcher提高效率。最后,详细讲解了随机抽样一致算法(RANSAC)在特征匹配中的应用,通过选择初始样本点迭代拟合,最终确定最佳拟合结果。
摘要由CSDN通过智能技术生成
img3 = cv2.drawMatchesKnn(img1,kp1,img2,kp2,good,None,flags=2)
Brute-Force蛮力匹配
import cv2 
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
img1 = cv2.imread('box.png', 0)
img2 = cv2.imread('box_in_scene.png', 0)
def cv_show(name,img):
    cv2.imshow(name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
sift = cv2.xfeatures2d.SIFT_create()
kp1, des1 = sift.detectAndCompute(img1, None)
kp2, des2 = sift.detectAndCompute(img2, None)
# crossCheck表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值