猴痘病识别

本文为🔗365天深度学习训练营 中的学习记录博客
 原作者:K同学啊|接辅导、项目定制

我的环境:

1.语言:python3.7

2.编译器:pycharm

3.深度学习环境:TensorFlow2.5


一.前期工作

1.设置GPU

若是使用的是cpu可忽略

import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]
    tf.config.experimental.set_memory_growth(gpu0, True)
    tf.config.set_visible_devices([gpu0],"GPU")

使用cpu训练

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"

2.导入数据集

from tensorflow import keras
from tensorflow.keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf

data_dir = "E:\TF环境\houdou"
data_dir = pathlib.Path(data_dir)

此处利用了pathlib模块,将data_dir种存储的路径传递给pathlib.Path类型的对象。方便我们对文件路径进行操作。

3.查看数据

image_count = len(list(data_dir.glob("*/*.jpg")))
print("图片总数为:",image_count)

data_dir是我们上面传输的文件路径。glob()方法可以获得文件夹中的文件列表。“*/*.jpg”表示匹配该文件夹下所有以。jpg结尾的文件。list() 将获得的文件换为列表,方便进行统计。len() 方法计算列表中元素的数量,这样我们就可以得到该文件夹下的图片总数。

Monkeypox = list(data_dir.glob("Monkeypox/*.jpg"))
hd = PIL.Image.open(str(Monkeypox[0]))
hd.show()

PIL是Python Imaging Library,它为python解释器提供了图像编辑函数。的Image模块提供了一个具有相同名称的类,用于表示PIL图像。该模块还提供了许多出厂函数,包括从文件加载图像和创建新图像的函数。PIL.Image.open()打开并标识给定的图像文件。

二、数据预处理

1、设置图片格式

batch_size = 32
img_height = 224
img_width = 224

2、划分训练集

使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。

训练集、测试集和验证集的关系:

(1) 训练集相当于课后的练习题,用于日常的知识巩固。

(2) 验证集相当于周考,用来纠正和强化学到的知识。

(3) 测试集相当于期末考试,用来最终评估学习效果。

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split = 0.2,
    subset = "training",
    seed = 123,
    image_size = (img_height, img_width),
    batch_size = batch_size
)

3、划分验证集

data_dir 为数据集目录的路径,validation_split 表示从数据集中划分出多少比例的数据作为验证集,subset 参数指定为 “validation” 则表示从数据集的 20% 中选择作为验证集,其余 80% 作为训练集。seed 是一个随机种子,用于生成可重复的随机数。image_size 参数指定输出图像的大小,batch_size 表示每批次加载的图像数量。

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split = 0.2,
    subset = "validation",
    seed = 123,
    image_size = (img_height, img_width),
    batch_size = batch_size
)

4、查看标签

class_names = train_ds.class_names
print(class_names)

train_ds.class_names 是一个属性,它是通过数据集对象 train_ds 中的类别信息自动生成的一个包含类别名称的列表。

可视化数据

plt.figure(figsize = (20, 10))
for images, labels in train_ds.take(1):
  for i in range(20):
    plt.subplot(5, 10, i + 1)
    plt.imshow(images[i].numpy().astype("uint8"))
    plt.title(class_names[labels[i]])
    plt.axis("off")
plt.show()

 3、再次检查数据

for image_batch, labels_batch in train_ds:
  print(image_batch.shape)
  print(labels_batch.shape)
  break

 image_batch是形状的张量(32,224,224,3).这是一批形状224x224x3的32张图片(最后一维是指彩色通道RGB)。

label_batch是形状(32,)的张量,这些标签对应32张图片

三、配置数据集

AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size = AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size = AUTOTUNE)

AUTOTUNE 是 TensorFlow 的一个常量。它表示 TensorFlow 数据处理流程中可以自动选择最优化参数(例如 GPU 处理数量等)的范围,在不同的硬件配置下可能会有不同的取值。

train_ds.cache() 和 val_ds.cache() 函数是 Tensorflow 的数据转换函数,它们的作用是将数据集中的元素缓存到内存或者磁盘中,以便后续访问时能够更快地读取数据。使用缓存可以避免由于磁盘 I/O 等因素导致数据读取速度变慢的问题,从而加速训练或评估过程。

train_ds.shuffle(1000) 函数是 Tensorflow 的数据转换函数,它的作用是将输入数据集中的元素随机打乱顺序。
这样做的目的是防止模型过拟合,并促进模型对不同数据的学习能力。其中,1000 表示用于对数据集进行重排的元素数量,其具体取值可以根据数据集大小进行调整。


四、构建CNN网络

卷积神经网络(CNN)的输入是张量形式的(image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels为(R,G,B)分别对应的RGB的三个颜色通道(color channel)。在此实列中,我们的CNN输入的形状是(224,224,3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。

num_classes = 2
model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1. / 255, input_shape = (img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation = 'relu', input_shape = (img_height, img_width, 3)),
    layers.AveragePooling2D((2, 2)),
    layers.Conv2D(32, (3, 3), activation = 'relu'),
    layers.AveragePooling2D((2, 2)),
    layers.Dropout(0.3),
    layers.Conv2D(64, (3, 3), activation = 'relu'),
    layers.Dropout(0.3),

    layers.Flatten(),
    layers.Dense(128, activation = 'relu'),
    layers.Dense(num_classes)
])

model.summary()

 五、编译

opt = tf.keras.optimizers.Adam(learning_rate = 1e-4)
model.compile(
    optimizer = opt,
    loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits = True),
    metrics = ['accuracy']
)

optimizer(优化器):决定模型如何根据其看到的数据和自身的损失函数进行更新。

loss(损失函数):用于衡量模型在训练期间的准确率。

metrics(指标):用于监控训练和测试步骤。一上实例使用了准确率,即被正确分类的图像的比率。

六、模型训练

from tensorflow.keras.callbacks import ModelCheckpoint

epochs = 50

checkpointer = ModelCheckpoint(
    'best_model.h5',
    monitor = 'val_accuracy',
    verbose = 1,
    save_best_only = True,
    save_weights_only = True
)
history = model.fit(
    train_ds,
    validation_data = val_ds,
    epochs = epochs,
    callbacks = [checkpointer]
)

七、模型评估

1、Loss与Accuracy图

loss = history.history['loss']
val_loss = history.history['val_loss']

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

epochs_range = range(len(loss))

plt.figure(figsize = (12, 4))

plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label = "Training Acc")
plt.plot(epochs_range, val_acc, label = "Validation Acc")
plt.legend(loc = 'lower right')
plt.title("Training And Validation Acc")

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label = "Training Loss")
plt.plot(epochs_range, val_loss, label = "Validation Loss")
plt.legend(loc = 'upper right')
plt.title("Training And Validation Loss")

plt.show()

 

 

2、指定图片预测

model.load_weights('best_model.h5')
#这段代码用于加载之前训练中保存的最佳模型权重。'best_model.h5' 指的是之前保存的模型权重文件路径和名称。
#这样可以避免从头开始训练模型,直接使用已经训练好的最佳模型进行预测的工作。

from PIL import Image
import numpy as np
img = Image.open("45-data/Monkeypox/M01_02_06.jpg") 
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0)
predictions = model.predict(img_array)
print("预测结果为:", class_names[np.argmax(predictions)])

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值