VisDrone2018-DET-toolkit-master工具包用法以及踩坑记录(基于TPH-YOLOv5在VisDrone2019数据集上的测试)

文章介绍了VisDrone2019无人机视觉目标检测数据集,包括其规模、多样性以及使用VisDrone2018-DET-toolkit-master工具包的要求。作者分享了使用改进的YOLOv5模型进行测试的过程,特别是如何将YOLO格式的标签转换为VisDrone所需的格式。在标签转换中遇到的问题,如空txt文件、AP值过低等,以及相应的解决方案也被详细讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 1、VisDrone2019数据集介绍

        VisDrone2019数据集由天津大学机器学习和数据挖掘实验室AISKYEYE团队收集。基准数据集包括288个视频片段,由261908帧和10209幅静态图像组成,由各种无人机摄像头捕获,覆盖范围广泛,包括位置(来自中国相隔数千公里的14个不同城市)、环境(城市和农村)、物体(行人、车辆、自行车、等)和密度(稀疏和拥挤的场景)。请注意,数据集是在不同的场景、不同的天气和光照条件下使用不同的无人机平台(即不同型号的无人机)收集的。

        在官网上下载的数据集格式如图,其中训练集有6471张图片,验证集有548张图片,测试集使用第二个test-dev的1610张图片,因为这个测试集有真值标签,可以用我们的测试结果在matlab上使用VisDrone2018-DET-toolkit-master工具包测试AP。

2,TPH-YOLOv5对VisDrone2019-DET-test-dev数据集测试

        我使用的是改进的YOLOv5模型进行训练与测试,其他模型也是一样的。具体网络的下载,环境的配置,模型的训练等等都不是本文的重点,如果有需要我将会把代码链接公布大家自取。

        首先在TPH-YOLOv5的detect.py文件下测试VisDrone2019-DET-test-dev数据集,针对每一个图片会生成一个YOLO格式的标签txt文件,如图:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值