1、VisDrone2019数据集介绍
VisDrone2019数据集由天津大学机器学习和数据挖掘实验室AISKYEYE团队收集。基准数据集包括288个视频片段,由261908帧和10209幅静态图像组成,由各种无人机摄像头捕获,覆盖范围广泛,包括位置(来自中国相隔数千公里的14个不同城市)、环境(城市和农村)、物体(行人、车辆、自行车、等)和密度(稀疏和拥挤的场景)。请注意,数据集是在不同的场景、不同的天气和光照条件下使用不同的无人机平台(即不同型号的无人机)收集的。
在官网上下载的数据集格式如图,其中训练集有6471张图片,验证集有548张图片,测试集使用第二个test-dev的1610张图片,因为这个测试集有真值标签,可以用我们的测试结果在matlab上使用VisDrone2018-DET-toolkit-master工具包测试AP。
2,TPH-YOLOv5对VisDrone2019-DET-test-dev数据集测试
我使用的是改进的YOLOv5模型进行训练与测试,其他模型也是一样的。具体网络的下载,环境的配置,模型的训练等等都不是本文的重点,如果有需要我将会把代码链接公布大家自取。
首先在TPH-YOLOv5的detect.py文件下测试VisDrone2019-DET-test-dev数据集,针对每一个图片会生成一个YOLO格式的标签txt文件,如图: