Permutation matrix

In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 1 1 in each row and each column and 0 0 0s elsewhere. Each such matrix, say P P P, represents a permutation of m m m elements and, when used to multiply another matrix, say A A A, results in permuting the rows (when pre-multiplying, to form P A PA PA) or columns (when post-multiplying, to form A P AP AP) of the matrix A A A.

1 Definition

Given a permutation π π π of m m m elements,
π : { 1 , … , m } → { 1 , … , m } {\displaystyle \pi :\lbrace 1,\ldots ,m\rbrace \to \lbrace 1,\ldots ,m\rbrace } π:{1,,m}{1,,m}
represented in two-line form by
( 1 2 ⋯ m π ( 1 ) π ( 2 ) ⋯ π ( m ) ) , {\displaystyle {\begin{pmatrix}1&2&\cdots &m\\\pi (1)&\pi (2)&\cdots &\pi (m)\end{pmatrix}},} (1π(1)2π(2)mπ(m)),
there are two natural ways to associate the permutation with a permutation matrix; namely, starting with the m × m m × m m×m identity matrix, I m I_m Im, either permute the columns or permute the rows, according to π π π. Both methods of defining permutation matrices appear in the literature and the properties expressed in one representation can be easily converted to the other representation. This article will primarily deal with just one of these representations and the other will only be mentioned when there is a difference to be aware of.

The m × m m × m m×m permutation matrix P π = ( p i j ) P_π = (p_{ij}) Pπ=(pij) obtained by permuting the columns of the identity matrix I m I_m Im, that is, for each i i i, p i j = 1 p_{ij} = 1 pij=1 if j = π ( i ) j = π(i) j=π(i) and p i j = 0 p_{ij} = 0 pij=0 otherwise, will be referred to as the column representation in this article. Since the entries in row i i i are all 0 0 0 except that a 1 1 1 appears in column π ( i ) π(i) π(i), we may write
P π = [ e π ( 1 ) e π ( 2 ) ⋮ e π ( m ) ] , {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\vdots \\\mathbf {e} _{\pi (m)}\end{bmatrix}},} Pπ= eπ(1)eπ(2)eπ(m) ,
where e j e_j ej, a standard basis vector, denotes a row vector of length m m m with 1 1 1 in the j j jth position and 0 0 0 in every other position.

For example, the permutation matrix P π P_π Pπ corresponding to the permutation π = ( 1 2 3 4 5 1 4 2 5 3 ) {\displaystyle \pi ={\begin{pmatrix}1&2&3&4&5\\1&4&2&5&3\end{pmatrix}}} π=(1124324553) is
P π = [ e π ( 1 ) e π ( 2 ) e π ( 3 ) e π ( 4 ) e π ( 5 ) ] = [ e 1 e 4 e 2 e 5 e 3 ] = [ 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 ] . {\displaystyle P_{\pi }={\begin{bmatrix}\mathbf {e} _{\pi (1)}\\\mathbf {e} _{\pi (2)}\\\mathbf {e} _{\pi (3)}\\\mathbf {e} _{\pi (4)}\\\mathbf {e} _{\pi (5)}\end{bmatrix}}={\begin{bmatrix}\mathbf {e} _{1}\\\mathbf {e} _{4}\\\mathbf {e} _{2}\\\mathbf {e} _{5}\\\mathbf {e} _{3}\end{bmatrix}}={\begin{bmatrix}1&0&0&0&0\\0&0&0&1&0\\0&1&0&0&0\\0&0&0&0&1\\0&0&1&0&0\end{bmatrix}}.} Pπ= eπ(1)eπ(2)eπ(3)eπ(4)eπ(5) = e1e4e2e5e3 = 1000000100000010100000010 .
Observe that the j j jth column of the I 5 I_5 I5 identity matrix now appears as the π ( j ) π(j) π(j)th column of P π P_π Pπ.

The other representation, obtained by permuting the rows of the identity matrix I m I_m Im, that is, for each j , p i j = 1 j, p_{ij} = 1 j,pij=1 if i = π ( j ) i = π(j) i=π(j) and p i j = 0 p_{ij} = 0 pij=0 otherwise, will be referred to as the row representation.

2 Properties

3 Matrix group

4 Doubly stochastic matrices

5 Linear algebraic properties

6 Examples

6.1 Permutation of rows and columns

6.2 Permutation of rows

7 Explanation

8 Restricted forms

9 See also

10 References

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值