In linear algebra, the Rouché–Capelli theorem determines the number of solutions for a system of linear equations, given the rank of its augmented matrix and coefficient matrix. The theorem is variously known as the:
- Rouché–Capelli theorem in English speaking countries, Italy and Brazil;
- Kronecker–Capelli theorem in Austria, Poland, Romania and Russia;
- Rouché–Fontené theorem in France;
- Rouché–Frobenius theorem in Spain and many countries in Latin America;
- Frobenius theorem in the Czech Republic and in Slovakia.
1 Formal statement
A system of linear equations with n n n variables has a solution if and only if the rank of its coefficient matrix A A A is equal to the rank of its augmented matrix [ A ∣ b ] [A|b] [A∣b]. If there are solutions, they form an affine subspace of R n {\displaystyle \mathbb {R} ^{n}} Rn of dimension n n n − rank( A A A). In particular:
- if n = r a n k ( A ) n = rank(A) n=rank(A), the solution is unique,
- otherwise there are infinitely many solutions.
2 Example
Consider the system of equations
x
+
y
+
2
z
=
3
,
x
+
y
+
z
=
1
,
2
x
+
2
y
+
2
z
=
2.
x + y + 2z = 3, \\ x + y + z = 1, \\ 2x + 2y + 2z = 2.
x+y+2z=3,x+y+z=1,2x+2y+2z=2.
The coefficient matrix is
A
=
[
1
1
2
1
1
1
2
2
2
]
,
{\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},}
A=
112112212
,
and the augmented matrix is
(
A
∣
B
)
=
[
1
1
2
3
1
1
1
1
2
2
2
2
]
.
{\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&2\end{array}}\right].}
(A∣B)=
112112212312
.
Since both of these have the same rank, namely
2
2
2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being
3
3
3, there are infinitely many solutions.
In contrast, consider the system
x
+
y
+
2
z
=
3
,
x
+
y
+
z
=
1
,
2
x
+
2
y
+
2
z
=
5.
x + y + 2z = 3, \\ x + y + z = 1, \\ 2x + 2y + 2z = 5.
x+y+2z=3,x+y+z=1,2x+2y+2z=5.
The coefficient matrix is
A
=
[
1
1
2
1
1
1
2
2
2
]
,
{\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},}
A=
112112212
,
and the augmented matrix is
(
A
∣
B
)
=
[
1
1
2
3
1
1
1
1
2
2
2
5
]
.
{\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&5\end{array}}\right].}
(A∣B)=
112112212315
.
In this example the coefficient matrix has rank
2
2
2, while the augmented matrix has rank
3
3
3; so this system of equations has no solution. Indeed, an increase in the number of linearly independent columns has made the system of equations inconsistent.