Rouché–Capelli theorem

In linear algebra, the Rouché–Capelli theorem determines the number of solutions for a system of linear equations, given the rank of its augmented matrix and coefficient matrix. The theorem is variously known as the:

1 Formal statement

A system of linear equations with n n n variables has a solution if and only if the rank of its coefficient matrix A A A is equal to the rank of its augmented matrix [ A ∣ b ] [A|b] [Ab]. If there are solutions, they form an affine subspace of R n {\displaystyle \mathbb {R} ^{n}} Rn of dimension n n n − rank( A A A). In particular:

  • if n = r a n k ( A ) n = rank(A) n=rank(A), the solution is unique,
  • otherwise there are infinitely many solutions.

2 Example

Consider the system of equations
x + y + 2 z = 3 , x + y + z = 1 , 2 x + 2 y + 2 z = 2. x + y + 2z = 3, \\ x + y + z = 1, \\ 2x + 2y + 2z = 2. x+y+2z=3,x+y+z=1,2x+2y+2z=2.
The coefficient matrix is
A = [ 1 1 2 1 1 1 2 2 2 ] , {\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},} A= 112112212 ,
and the augmented matrix is
( A ∣ B ) = [ 1 1 2 3 1 1 1 1 2 2 2 2 ] . {\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&2\end{array}}\right].} (AB)= 112112212312 .
Since both of these have the same rank, namely 2 2 2, there exists at least one solution; and since their rank is less than the number of unknowns, the latter being 3 3 3, there are infinitely many solutions.

In contrast, consider the system
x + y + 2 z = 3 , x + y + z = 1 , 2 x + 2 y + 2 z = 5. x + y + 2z = 3, \\ x + y + z = 1, \\ 2x + 2y + 2z = 5. x+y+2z=3,x+y+z=1,2x+2y+2z=5.
The coefficient matrix is
A = [ 1 1 2 1 1 1 2 2 2 ] , {\displaystyle A={\begin{bmatrix}1&1&2\\1&1&1\\2&2&2\\\end{bmatrix}},} A= 112112212 ,
and the augmented matrix is
( A ∣ B ) = [ 1 1 2 3 1 1 1 1 2 2 2 5 ] . {\displaystyle (A|B)=\left[{\begin{array}{ccc|c}1&1&2&3\\1&1&1&1\\2&2&2&5\end{array}}\right].} (AB)= 112112212315 .
In this example the coefficient matrix has rank 2 2 2, while the augmented matrix has rank 3 3 3; so this system of equations has no solution. Indeed, an increase in the number of linearly independent columns has made the system of equations inconsistent.

3 See also

4 References

5 External links

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值