Partially ordered set

部分有序集(Partially Ordered Set,简称Poset)是数学中一种形式化和推广了集合元素顺序的概念。它由一个集合及其上的二元关系组成,该关系表明集合内某些元素在排序中前于其他元素。不同于全序,部分有序集允许存在不可比较的元素对。部分有序集可以用哈斯图来直观表示,其中箭头方向表示元素之间的前后关系。博客详细讨论了部分有序集的定义、关系类型、衍生概念以及在不同领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a “partial order.”

The word partial in the names “partial order” and “partially ordered set” is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable.

在这里插入图片描述
在这里插入图片描述

Fig.1 The Hasse diagram of the set of all subsets of a three-element set {\displaystyle {x,y,z},}{\displaystyle {x,y,z},} ordered by inclusion. Sets connected by an upward path, like {\displaystyle \emptyset }\emptyset and {\displaystyle {x,y}}{x,y}, are comparable, while e.g. {\displaystyle {x}}{x} and {\displaystyle {y}}{y} are not.

1 Informal definition

A partial order defines a notion of comparison. Two elements x and y may stand in any of four mutually exclusive relationships to each other: either x < y, or x = y, or x > y, or x and y are incomparable.[1][2]

A set with a partial order is called a partially ordered set (also called a poset). The term ordered set is sometimes also used, as long as it is clear from the context that no other kind of order is meant. In particular, totally ordered sets can also be referred to as “ordered sets”, especially in areas where these structures are more common than posets.

A poset can be visualized through its Hasse diagram, which depicts the ordering relation.[3]

2 Partial order relation

2.1 Non-strict partial order

2.2 Strict partial order

2.3 Correspondence of strict and non-strict partial order relations

2.4 Dual orders

3 Notation

4 Examples

4.1 Orders on the Cartesian product of partially ordered sets

4.2 Sums of partially ordered sets

5 Derived notions

5.1 Extrema

6 Mappings between partially ordered sets

7 Number of partial orders

8 Linear extension

9 Directed acyclic graphs

10 In category theory

11 Partial orders in topological spaces

12 Intervals

13 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值