Directed set

In mathematics, a directed set (or a directed preorder or a filtered set) is a nonempty set {\displaystyle A}A together with a reflexive and transitive binary relation {\displaystyle ,\leq ,}{\displaystyle ,\leq ,} (that is, a preorder), with the additional property that every pair of elements has an upper bound.[1] In other words, for any {\displaystyle a}a and {\displaystyle b}b in {\displaystyle A}A there must exist {\displaystyle c}c in {\displaystyle A}A with {\displaystyle a\leq c}{\displaystyle a\leq c} and {\displaystyle b\leq c.}{\displaystyle b\leq c.} A directed set’s preorder is called a direction.

The notion defined above is sometimes called an upward directed set. A downward directed set is defined analogously,[2] meaning that every pair of elements is bounded below.[3] Some authors (and this article) assume that a directed set is directed upward, unless otherwise stated. Other authors call a set directed if and only if it is directed both upward and downward.[4]

Directed sets are a generalization of nonempty totally ordered sets. That is, all totally ordered sets are directed sets (contrast partially ordered sets, which need not be directed). Join-semilattices (which are partially ordered sets) are directed sets as well, but not conversely. Likewise, lattices are directed sets both upward and downward.

In topology, directed sets are used to define nets, which generalize sequences and unite the various notions of limit used in analysis. Directed sets also give rise to direct limits in abstract algebra and (more generally) category theory.

1 Equivalent definition

In addition to the definition above, there is an equivalent definition. A directed set is a set {\displaystyle A}A with a preorder such that every finite subset of {\displaystyle A}A has an upper bound. In this definition, the existence of an upper bound of the empty subset implies that {\displaystyle A}A is nonempty.

2 Examples

The set of natural numbers {\displaystyle \mathbb {N} }\mathbb {N} with the ordinary order {\displaystyle ,\leq ,}{\displaystyle ,\leq ,} is one of the most important examples of a directed set (and so is every totally ordered set). By definition, a net is a function from a directed set and a sequence is a function from the natural numbers {\displaystyle \mathbb {N} .}{\displaystyle \mathbb {N} .} Every sequence canonically becomes a net by endowing {\displaystyle \mathbb {N} }\mathbb {N} with {\displaystyle ,\leq .,}{\displaystyle ,\leq .,}

A (trivial) example of a partially ordered set that is not directed is the set {\displaystyle {a,b},}{\displaystyle {a,b},} in which the only order relations are {\displaystyle a\leq a}{\displaystyle a\leq a} and {\displaystyle b\leq b.}{\displaystyle b\leq b.} A less trivial example is like the previous example of the “reals directed towards {\displaystyle x_{0}}x_{0}” but in which the ordering rule only applies to pairs of elements on the same side of {\displaystyle x_{0}}x_{0} (that is, if one takes an element {\displaystyle a}a to the left of {\displaystyle x_{0},}x_0, and {\displaystyle b}b to its right, then {\displaystyle a}a and {\displaystyle b}b are not comparable, and the subset {\displaystyle {a,b}}{\displaystyle {a,b}} has no upper bound).

If {\displaystyle x_{0}}x_{0} is a real number then the set {\displaystyle I:=\mathbb {R} \backslash \lbrace x_{0}\rbrace }{\displaystyle I:=\mathbb {R} \backslash \lbrace x_{0}\rbrace } can be turned into a directed set by defining {\displaystyle a\leq {I}b}{\displaystyle a\leq {I}b} if {\displaystyle \left|a-x{0}\right|\geq \left|b-x{0}\right|}{\displaystyle \left|a-x_{0}\right|\geq \left|b-x_{0}\right|} (so “greater” elements are closer to {\displaystyle x_{0}}x_{0}). We then say that the reals have been directed towards {\displaystyle x_{0}.}x_{0}. This is an example of a directed set that is neither partially ordered nor totally ordered. This is because antisymmetry breaks down for every pair {\displaystyle a}a and {\displaystyle b}b equidistant from {\displaystyle x_{0},}x_0, where {\displaystyle a}a and {\displaystyle b}b are on opposite sides of {\displaystyle x_{0}.}x_{0}. Explicitly, this happens when {\displaystyle {a,b}=\left{x_{0}-r,x_{0}+r\right}}{\displaystyle {a,b}=\left{x_{0}-r,x_{0}+r\right}} for some real {\displaystyle r\neq 0,}{\displaystyle r\neq 0,} in which case {\displaystyle a\leq {I}b}{\displaystyle a\leq {I}b} and {\displaystyle b\leq {I}a}{\displaystyle b\leq {I}a} even though {\displaystyle a\neq b.}{\displaystyle a\neq b.} Had this preorder been defined on {\displaystyle \mathbb {R} }\mathbb {R} instead of {\displaystyle \mathbb {R} \backslash \lbrace x{0}\rbrace }{\displaystyle \mathbb {R} \backslash \lbrace x{0}\rbrace } then it would still form a directed set but it would now have a (unique) greatest element, specifically {\displaystyle x{0}}x{0}; however, it still wouldn’t be partially ordered. This example can be generalized to a metric space {\displaystyle (X,d)}(X,d) by defining on {\displaystyle X}X or {\displaystyle X\setminus \left{x_{0}\right}}{\displaystyle X\setminus \left{x_{0}\right}} the preorder {\displaystyle a\leq b}a\leq b if and only if {\displaystyle d\left(a,x_{0}\right)\geq d\left(b,x_{0}\right).}{\displaystyle d\left(a,x_{0}\right)\geq d\left(b,x_{0}\right).}

2.1 Maximal and greatest elements

An element {\displaystyle m}m of a preordered set {\displaystyle (I,\leq )}{\displaystyle (I,\leq )} is a maximal element if for every {\displaystyle j\in I}{\displaystyle j\in I}, {\displaystyle m\leq j}{\displaystyle m\leq j} implies {\displaystyle j\leq m}{\displaystyle j\leq m}.[5] It is a greatest element if for every {\displaystyle j\in I,}{\displaystyle j\in I,} {\displaystyle j\leq m.}{\displaystyle j\leq m.} Some straightforward implications of the definition include:

Any preordered set with a greatest element is a directed set with the same preorder.
For instance, in a poset {\displaystyle P,}P, every lower closure of an element; that is, every subset of the form {\displaystyle {a\in P:a\leq x}}{\displaystyle {a\in P:a\leq x}} where {\displaystyle x}x is a fixed element from {\displaystyle P,}P, is directed.
Every maximal element of a directed preordered set is a greatest element. Indeed, a directed preordered set is characterized by equality of the (possibly empty) sets of maximal and of greatest elements.

2.2 Product of directed sets

Let {\displaystyle \mathbb {D} {1}}{\displaystyle \mathbb {D} {1}} and {\displaystyle \mathbb {D} {2}}{\displaystyle \mathbb {D} {2}} be directed sets. Then the Cartesian product set {\displaystyle \mathbb {D} {1}\times \mathbb {D} {2}}{\displaystyle \mathbb {D} {1}\times \mathbb {D} {2}} can be made into a directed set by defining {\displaystyle \left(n{1},n{2}\right)\leq \left(m{1},m{2}\right)}{\displaystyle \left(n{1},n{2}\right)\leq \left(m{1},m{2}\right)} if and only if {\displaystyle n_{1}\leq m_{1}}{\displaystyle n_{1}\leq m_{1}} and {\displaystyle n_{2}\leq m_{2}.}{\displaystyle n_{2}\leq m_{2}.} In analogy to the product order this is the product direction on the Cartesian product. For example, the set {\displaystyle \mathbb {N} \times \mathbb {N} }{\displaystyle \mathbb {N} \times \mathbb {N} } of pairs of natural numbers can be made into a directed set by defining {\displaystyle \left(n_{0},n_{1}\right)\leq \left(m_{0},m_{1}\right)}{\displaystyle \left(n_{0},n_{1}\right)\leq \left(m_{0},m_{1}\right)} if and only if {\displaystyle n_{0}\leq m_{0}}{\displaystyle n_{0}\leq m_{0}} and {\displaystyle n_{1}\leq m_{1}.}{\displaystyle n_{1}\leq m_{1}.}

2.3 Subset inclusion

3 Contrast with semilattices

4 Directed subsets

5 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值