Hyperinteger

In nonstandard analysis, a hyperinteger n is a hyperreal number that is equal to its own integer part. A hyperinteger may be either finite or infinite. A finite hyperinteger is an ordinary integer. An example of an infinite hyperinteger is given by the class of the sequence (1, 2, 3, …) in the ultrapower construction of the hyperreals.

Discussion

The standard integer part function:

{\displaystyle \lfloor x\rfloor }\lfloor x\rfloor
is defined for all real x and equals the greatest integer not exceeding x. By the transfer principle of nonstandard analysis, there exists a natural extension:

{\displaystyle {}^{}!\lfloor ,\cdot ,\rfloor }{\displaystyle {}^{}!\lfloor ,\cdot ,\rfloor }
defined for all hyperreal x, and we say that x is a hyperinteger if {\displaystyle x={}^{}!\lfloor x\rfloor .}{\displaystyle x={}^{}!\lfloor x\rfloor .} Thus the hyperintegers are the image of the integer part function on the hyperreals.

Internal sets

The set {\displaystyle ^{}\mathbb {Z} }^{}{\mathbb {Z}} of all hyperintegers is an internal subset of the hyperreal line {\displaystyle ^{}\mathbb {R} }^{}{\mathbb {R}}. The set of all finite hyperintegers (i.e. {\displaystyle \mathbb {Z} }\mathbb {Z} itself) is not an internal subset. Elements of the complement {\displaystyle ^{}\mathbb {Z} \setminus \mathbb {Z} }^{}{\mathbb {Z}}\setminus {\mathbb {Z}} are called, depending on the author, nonstandard, unlimited, or infinite hyperintegers. The reciprocal of an infinite hyperinteger is always an infinitesimal.

Nonnegative hyperintegers are sometimes called hypernatural numbers. Similar remarks apply to the sets {\displaystyle \mathbb {N} }\mathbb {N} and {\displaystyle ^{}\mathbb {N} }^{}\mathbb {N} . Note that the latter gives a non-standard model of arithmetic in the sense of Skolem.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值