Limit inferior and limit superior

In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting (that is, eventual and extreme) bounds on the sequence. They can be thought of in a similar fashion for a function (see limit of a function). For a set, they are the infimum and supremum of the set’s limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit.

The limit inferior of a sequence {\displaystyle x_{n}}x_{n} is denoted by

{\displaystyle \liminf {n\to \infty }x{n}\quad {\text{or}}\quad \varliminf {n\to \infty }x{n}.}{\displaystyle \liminf {n\to \infty }x{n}\quad {\text{or}}\quad \varliminf {n\to \infty }x{n}.}
The limit superior of a sequence {\displaystyle x_{n}}x_{n} is denoted by
{\displaystyle \limsup {n\to \infty }x{n}\quad {\text{or}}\quad \varlimsup {n\to \infty }x{n}.}{\displaystyle \limsup {n\to \infty }x{n}\quad {\text{or}}\quad \varlimsup {n\to \infty }x{n}.}

在这里插入图片描述

An illustration of limit superior and limit inferior. The sequence xn is shown in blue. The two red curves approach the limit superior and limit inferior of xn, shown as dashed black lines. In this case, the sequence accumulates around the two limits. The superior limit is the larger of the two, and the inferior limit is the smaller of the two. The inferior and superior limits agree if and only if the sequence is convergent (i.e., when there is a single limit).

1 Definition for sequences

The limit inferior of a sequence (xn) is defined by

{\displaystyle \liminf {n\to \infty }x{n}:=\lim _{n\to \infty }{\Big (}\inf {m\geq n}x{m}{\Big )}}{\displaystyle \liminf {n\to \infty }x{n}:=\lim _{n\to \infty }{\Big (}\inf {m\geq n}x{m}{\Big )}}
or
{\displaystyle \liminf {n\to \infty }x{n}:=\sup {n\geq 0},\inf {m\geq n}x{m}=\sup{,\inf{,x{m}:m\geq n,}:n\geq 0,}.}{\displaystyle \liminf {n\to \infty }x{n}:=\sup {n\geq 0},\inf {m\geq n}x{m}=\sup{,\inf{,x{m}:m\geq n,}:n\geq 0,}.}
Similarly, the limit superior of (xn) is defined by

{\displaystyle \limsup {n\to \infty }x{n}:=\lim _{n\to \infty }{\Big (}\sup {m\geq n}x{m}{\Big )}}{\displaystyle \limsup {n\to \infty }x{n}:=\lim _{n\to \infty }{\Big (}\sup {m\geq n}x{m}{\Big )}}
or
{\displaystyle \limsup {n\to \infty }x{n}:=\inf {n\geq 0},\sup {m\geq n}x{m}=\inf{,\sup{,x{m}:m\geq n,}:n\geq 0,}.}{\displaystyle \limsup {n\to \infty }x{n}:=\inf {n\geq 0},\sup {m\geq n}x{m}=\inf{,\sup{,x{m}:m\geq n,}:n\geq 0,}.}
Alternatively, the notations {\displaystyle \varliminf {n\to \infty }x{n}:=\liminf {n\to \infty }x{n}}\varliminf {n\to \infty }x{n}:=\liminf {n\to \infty }x{n} and {\displaystyle \varlimsup {n\to \infty }x{n}:=\limsup {n\to \infty }x{n}}\varlimsup {n\to \infty }x{n}:=\limsup {n\to \infty }x{n} are sometimes used.

The limits superior and inferior can equivalently be defined using the concept of subsequential limits of the sequence {\displaystyle (x_{n})}(x_{n}).[1] An element {\displaystyle \xi }\xi of the extended real numbers {\displaystyle {\overline {\mathbb {R} }}}{\displaystyle {\overline {\mathbb {R} }}} is a subsequential limit of {\displaystyle (x_{n})}(x_{n}) if there exists a strictly increasing sequence of natural numbers {\displaystyle (n_{k})}{\displaystyle (n_{k})} such that {\displaystyle \xi =\lim {k\to \infty }x{n_{k}}}{\displaystyle \xi =\lim {k\to \infty }x{n_{k}}}. If {\displaystyle E\subseteq {\overline {\mathbb {R} }}}{\displaystyle E\subseteq {\overline {\mathbb {R} }}} is the set of all subsequential limits of {\displaystyle (x_{n})}(x_{n}), then

{\displaystyle \limsup {n\to \infty }x{n}=\sup E}{\displaystyle \limsup {n\to \infty }x{n}=\sup E}
and

{\displaystyle \liminf {n\to \infty }x{n}=\inf E.}{\displaystyle \liminf {n\to \infty }x{n}=\inf E.}
If the terms in the sequence are real numbers, the limit superior and limit inferior always exist, as the real numbers together with ±∞ (i. e. the extended real number line) are complete. More generally, these definitions make sense in any partially ordered set, provided the suprema and infima exist, such as in a complete lattice.

Whenever the ordinary limit exists, the limit inferior and limit superior are both equal to it; therefore, each can be considered a generalization of the ordinary limit which is primarily interesting in cases where the limit does not exist. Whenever lim inf xn and lim sup xn both exist, we have

{\displaystyle \liminf {n\to \infty }x{n}\leq \limsup {n\to \infty }x{n}.}\liminf {n\to \infty }x{n}\leq \limsup {n\to \infty }x{n}.
Limits inferior/superior are related to big-O notation in that they bound a sequence only “in the limit”; the sequence may exceed the bound. However, with big-O notation the sequence can only exceed the bound in a finite prefix of the sequence, whereas the limit superior of a sequence like e−n may actually be less than all elements of the sequence. The only promise made is that some tail of the sequence can be bounded above by the limit superior plus an arbitrarily small positive constant, and bounded below by the limit inferior minus an arbitrarily small positive constant.

The limit superior and limit inferior of a sequence are a special case of those of a function (see below).

2 The case of sequences of real numbers

2.1 Interpretation

2.2 Properties

2.2.1 Examples

3 Real-valued functions

4 Functions from topological spaces to complete lattices

4.1 Functions from metric spaces

4.2 Functions from topological spaces

5 Sequences of sets

5.1 General set convergence

5.2 Special case: discrete metric

5.3 Examples

6 Generalized definitions

6.1 Definition for a set

6.2 Definition for filter bases

6.2.1 Specialization for sequences and nets

7 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值