写在前面
之前我们了解了函数在某点连续的定义,同时也提到了有理函数在其定义域内的每一点都连续,这篇文章,我们就来详细了解连续函数和连续性这两个概念。
一、连续函数的和、差、积、商的连续性
由函数在某点连续的定义和极限的四则运算法则,我们可以得到一个重要的定理:
定理1
设函数
f
(
x
)
f(x)
f(x) 和
g
(
x
)
g(x)
g(x) 在点
x
0
x_0
x0 连续,则它们的和(差)
f
±
g
f\pm g
f±g、积
f
⋅
g
f\cdot g
f⋅g 及商
f
g
\dfrac fg
gf(当
g
(
x
0
)
≠
0
g(x_0)\ne0
g(x0)=0)时都在点
x
0
x_0
x0 连续。
🌰例子:
tan x = sin x cos x \tan x=\dfrac{\sin x}{\cos x} tanx=cosxsinx 在定义域内连续,是因为 sin x \sin x sinx 和 cos x \cos x cosx 都在 ( − ∞ , + ∞ ) (-\infty,+\infty) (−∞,+∞) 连续。
二、反函数与复合函数的连续性
1. 反函数的连续性
定理2
如果函数
y
=
f
(
x
)
y=f(x)
y=f(x) 在区间
I
x
I_x
Ix 上单调递增(或单调递减)且连续,那么它的反函数
x
=
f
−
1
(
y
)
x=f^{-1}(y)
x=f−1(y) 也在对应的区间
I
y
=
{
y
∣
y
=
f
(
x
)
,
x
∈
I
x
}
I_y=\{y|y=f(x),x\in I_x\}
Iy={y∣y=f(x),x∈Ix} 上单调递增(或单调递减)且连续。
书上并没有给出证明,但不是很难。只需运用增函数减函数的定义即可。
*此处所说的单调递增和单调递减,更准确地来说应该是严格的。连续函数存在反函数的充要条件是函数在定义域内严格单调。
2. 复合函数的连续性
定理3
设函数
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)] 由函数
u
=
g
(
x
)
u=g(x)
u=g(x) 和函数
y
=
f
(
u
)
y=f(u)
y=f(u) 复合而成,
U
∘
(
x
0
)
⊂
D
f
∘
g
\overset{\circ}{U}(x_0)\subset D_{f\circ g}
U∘(x0)⊂Df∘g,若
lim
x
→
x
0
g
(
x
)
=
u
0
\displaystyle\lim_{x\to x_0}g(x)=u_0
x→x0limg(x)=u0,而函数
y
=
f
(
u
)
y=f(u)
y=f(u) 在
u
=
u
0
u=u_0
u=u0 连续,则
lim
x
→
x
0
f
[
g
(
x
)
]
=
lim
u
→
u
0
f
(
u
)
=
f
(
u
0
)
(*)
\displaystyle\lim_{x\to x_0}f[g(x)]=\lim_{u\to u_0}f(u)=f(u_0)\tag{*}
x→x0limf[g(x)]=u→u0limf(u)=f(u0)(*)
这个定理,只需要把复合函数的极限运算法则定理中的“存在 δ 0 > 0 \delta_0>0 δ0>0,当 x ∈ U ∘ ( x 0 , δ 0 ) x\in\overset{\circ}U(x_0,\delta_0) x∈U∘(x0,δ0) 时,有 g ( x ) ≠ u 0 g(x)\ne u_0 g(x)=u0”这个条件,便可以得到。
*根据定理中所给条件, ( ∗ ) (*) (∗) 式还可以写成 lim x → x 0 f [ g ( x ) ] = f [ lim x → x 0 g ( x ) ] \displaystyle\lim_{x\to x_0}f[g(x)]=f[\lim_{x\to x_0}g(x)] x→x0limf[g(x)]=f[x→x0limg(x)]
定理4
设函数
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)] 是由函数
u
=
g
(
x
)
u=g(x)
u=g(x) 与函数
y
=
f
(
u
)
y=f(u)
y=f(u) 复合而成,
U
(
x
0
)
⊂
D
f
∘
g
U(x_0)\subset D_{f\circ g}
U(x0)⊂Df∘g。若函数
u
=
g
(
x
)
u=g(x)
u=g(x) 在
x
=
x
0
x=x_0
x=x0 上连续,且
g
(
x
0
)
=
u
0
g(x_0)=u_0
g(x0)=u0,而函数
y
=
f
(
u
)
y=f(u)
y=f(u) 在
u
=
u
0
u=u_0
u=u0 连续,则复合函数
y
=
f
[
g
(
x
)
]
y=f[g(x)]
y=f[g(x)] 在
x
=
x
0
x=x_0
x=x0 也连续。
只要在定理3中令 u 0 = g ( x 0 ) u_0=g(x_0) u0=g(x0),这就表示 g ( x ) g(x) g(x) 在点 x 0 x_0 x0 连续,所以由 ( ∗ ) (*) (∗) 式得 $ lim x → x 0 f [ g ( x ) ] = f ( u 0 ) = f [ g ( x 0 ) ] \displaystyle\lim_{x\to x_0}f[g(x)]=f(u_0)=f[g(x_0)] x→x0limf[g(x)]=f(u0)=f[g(x0)],所以 f [ g ( x ) ] f[g(x)] f[g(x)] 在点 x 0 x_0 x0 上连续。
三、初等函数的连续性
首先,回忆一下:
基本初等函数:
幂函数、指数函数、对数函数、三角函数、反三角函数。
初等函数:
由常数和基本初等函数经过有限次的四则运算和有限次的函数符合步骤所构成并可用一个式子表示的函数。
- 基本初等函数在它们的定义域内都是连续的。
- 一切初等函数在其定义区间内都是连续的。
定义区间:包含在定义域内的区间
有了上面这些结论,我们就可以证明一些常见的等价无穷小关系式了。
-
ln ( 1 + x ) ∼ x ( x → 0 ) \ln(1+x)\sim x(x\to0) ln(1+x)∼x(x→0)
lim x → 0 ln ( 1 + x ) x = lim x → 0 ln ( 1 + x ) 1 x = ln e = 1 \displaystyle\lim_{x\to0}\dfrac{\ln(1+x)}x=\lim_{x\to0}\ln(1+x)^\frac1x=\ln e=1 x→0limxln(1+x)=x→0limln(1+x)x1=lne=1
事实上,把这里的 ln \ln ln 换成更一般的 log a \log_a loga,会有 log a ( 1 + x ) ∼ x ln a \log_a(1+x)\sim\dfrac x{\ln a} loga(1+x)∼lnax.
-
e x − 1 ∼ x ( x → 0 ) e^x-1\sim x(x\to0) ex−1∼x(x→0)
令 e x − 1 = t e^x-1=t ex−1=t,则 x = ln ( 1 + t ) x=\ln(1+t) x=ln(1+t),当 x → 0 x\to0 x→0 时, t → 0 t\to0 t→0
所以 lim x → 0 e x − 1 x = lim t → 0 t ln ( 1 + t ) = 1 \displaystyle\lim_{x\to0}\dfrac{e^x-1}x=\lim_{t\to0}\dfrac t{\ln(1+t)}=1 x→0limxex−1=t→0limln(1+t)t=1和上面类似,更一般的形式是 a x − 1 ∼ x ln a a^x-1\sim x\ln a ax−1∼xlna. 做个替换就行。
-
( 1 + x ) α − 1 ∼ α x ( x → 0 ) (1+x)^\alpha-1\sim\alpha x(x\to0) (1+x)α−1∼αx(x→0)
令 ( 1 + x ) α − 1 = t (1+x)^\alpha-1=t (1+x)α−1=t,则有 x → 0 x\to0 x→0 时, t → 0 t\to0 t→0
所以 lim x → 0 ( 1 + x ) α − 1 x = lim x → 0 [ ( 1 + x ) α − 1 ln ( 1 + x ) α ⋅ α ln ( 1 + x ) x ] = lim t → 0 t ln ( 1 + t ) ⋅ lim t → 0 α ln ( 1 + x ) x = α \displaystyle\lim_{x\to0}\dfrac{(1+x)^\alpha-1}x=\lim_{x\to0}\bigg[\dfrac{(1+x)^\alpha-1}{\ln(1+x)^\alpha}\cdot\dfrac{\alpha\ln(1+x)}x\bigg]=\lim_{t\to0}\dfrac t{\ln(1+t)}\cdot\lim_{t\to0}\dfrac{\alpha\ln(1+x)}x=\alpha x→0limx(1+x)α−1=x→0lim[ln(1+x)α(1+x)α−1⋅xαln(1+x)]=t→0limln(1+t)t⋅t→0limxαln(1+x)=α有些地方也把 α \alpha α 换成另一个希腊字母 μ \mu μ.
话说教科书上前面幂函数写的是 y = x μ ( μ ∈ R ) y=x^\mu(\mu\in\R) y=xμ(μ∈R),后面这个等价无穷小却用 α \alpha α,这两个字母的使用有什么不同标准吗😂
后话
还有最后一小节,讲的是闭区间上连续函数的性质,比如说零点存在定理。
后面就要讲有关于导数的知识啦,感觉前途一片光明 (至少高中会学)