物理 {基本单位,导出单位,单位的复合运算,量纲值的计算}
單位
定義
#基本單位#
即SI定義的7個單位;
#復合單位#
由基本單位進行代數運算後 得到的復合單位, 她可以有無數種 (比如km = 1000m, N(牛頓) = kg * m / s^2
);
性質
基本單位(国际单位制)
定義
#International System of Units
, 簡寫SI#;
時間: s
(秒second
);
距離: m
(米metre
);
質量: kg
(公斤KiloGram
);
電流: A
(安培Ampere
);
溫度: K
(開爾文Kelvin
);
物質量: mol
(摩爾mole
);
光強: cd
(坎德拉CanDela
);
性質
我們可以把常數 也看做是有單位的量, 即123 = 123(1)
這裡的(1)
就表示是常數單位;
導出單位(單位的復合運算)
定義
1:[基本單位是導出單位], 2:[導出單位進行以下復合操作後 依然是導出單位];
#復合操作#:
+(單位乘以常數): K(常數) * X(導出單位)
是一個新的導出單位; (比如 km = 1000m (即千米)
, 在單位前面加入數量級 (表示放大/縮小) 這稱之為Metric prefix (度量前綴)
); (1 * X = X
);
+(常數除以單位): K(常數) / X(導出單位)
是一個新的導出單位; (比如 Hz = 1/s (赫茲頻率)
);
+(單位的乘除): X1(導出單位) 乘或除 X2(導出單位)
是一個新的導出單位; (比如m*m = m^2 (面積)
, s/t (速度)
);
+(單位的加減): 只有相同的導出單位 才可以進行加減操作, X(導出單位) 加或減 X
其結果 不是一個新的導出單位 而是X本身; (比如m+m = m-m = m (米)
);
性質
相同单位的除法 会得到常量单位1
; (比如m/m = 1
, 注意 4m / 2 = 2m (米)
而4m / 2m = 2(常数) 表示倍数
);
单位里的常数 可以直接提出来 放到值里面; (比如3 km = (3*1000) m
);
@DELI;
復合單位 不一定有實際意義, 即你可以對單位進行任意的復合操作 都是可以的; (比如長度可以相乘: m*m = m^2 (面積)
但是時間不可以相乘 不存在s^2
這個定義, 但是 你依然可以s * s = s^2
得到s^2
這個復合單位 不必考慮其實際意義);
但必須要符合 定義中的復合條件, 比如說m + s
這是非法的 因為不同的單位之間 不可以進行加減運算;
@DELI;
由{基本單位,常數}進行代數運算後的單位, 是復合單位;
.
常見的復合單位: (常數*單位): 1e-9 * m = 納米; (常數/單位): 1/s = hz(赫茲); (單位*單位): m*m = 面積; (單位/單位): m/s/s = 加速度
);
錯誤
單位不支持加減復合, 即不存在一個單位是T = m+m
; 復合單位 就是對基本單位的乘/除復合;
量綱值的運算
定義
令量綱值X(u)
表示單位是u
值是X
(比如3m
, 注意我們把常數 也看做是量綱值 即X(1)
其單位是常數1
), 運算法則為: X1(u1) ? X2(u2) = (X1 ? X2)(u1 ? u2)
(?
表示加減乘除) (且前提是 (u1 ? u2)
必須滿足@LINK: 導出單位(單位的復合運算)
的條件);
.
舉例, 3 * 2m = 6m
, 1 / 5s = 0.2(1/s) = 0.2(hz) 赫茲頻率
, 6(m/s) / 2(s) = 3(m/s/s) 加速度
;
.
看幾種錯誤的運算: 2m + 3s
, 3 + 2s
, 2 - 3m
, 這是因為 這不滿足@LINK: 導出單位(單位的復合運算)
的前提條件;
性質
說白了, 量綱值的計算法則是: {值,單位} 同時獨立的進行運算; 2m * 3s = (2*3)(m*s) = 6(m*s)
;
@DELI;
2m * 3m = 6(m^2) 面积
, 2(m^2) * 3 = 6(m^2) 面积
, 注意两者的区别;
@DELI;
比如v = a*t (加速度*时间 = 速度)
, 即t = v / a = (m/s) / (m/s/s) = s
; 总之, 单位的运算法则 和普通的代数运算是一样的;
參見
Dimensional analysis: 量綱分析
;
錯誤
#相同單位的運算 單位不參與運算#
錯誤;
雖然對於2m + 3m = 5m
這是正確的, 但是對於2m * 3m
她不等於6m
而是等於6 m^2
; 量綱值的運算 必須按照定義, 即{值,單位}兩者要同時獨立的運算;