微分中值定理及导数应用

文章详细介绍了微分学中的关键概念,包括费马引理、罗尔定理、拉格朗日中值定理和柯西中值定理。讨论了泰勒公式及其不同的形式,如麦克劳林公式,以及拉格朗日余项在泰勒公式中的作用。此外,还涵盖了导数在求极值、判断函数凹凸性及拐点等方面的应用,以及曲线的渐近线和曲率的概念。
摘要由CSDN通过智能技术生成

目录

微分中值定理:

费马引理

罗尔定理

拉格朗日中值定理:

柯西中值定理

 泰勒公式:

麦克劳林公式:

 ​编辑

 拉格朗日余项泰勒公式:

 两个泰勒公式的不同点:

基本泰勒公式:

 导数应用:

驻点:

极值第一充分条件:

 函数的最大值最小值

曲线的凹凸性:

 拐点:

曲线的渐近线

 曲线的弧微分与曲率


微分中值定理:

费马引理

 简记为:可导的极值点的导数为0.

罗尔定理

 简记为:闭区间连续,开区间可导,两端点值相等,在区间上,存在一点ξ使得,这一点的导数等于0.

拉格朗日中值定理:

柯西中值定理

 泰勒公式:

麦克劳林公式:

 

 拉格朗日余项泰勒公式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值