【K-Means 算法原理和函数使用】

本文介绍了KMeans聚类算法的基本思想,包括其工作原理、优点(如简单实现和大数据处理能力)、缺点(如对初始聚类中心敏感)以及在sklearn库中的使用示例,重点讲解了关键参数如簇数量、初始化方法等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KMeans算法简介

KMeans算法的核心思想是将数据点分成预先指定数量的簇,使得簇内数据点的相似度最大化,而簇间数据点的相似度最小化。它的工作原理如下:

  1. 初始化:随机选择K个初始的聚类中心,其中K是用户指定的簇的数量。

  2. 分配数据点:将每个数据点分配给距离最近的聚类中心,形成K个簇。

  3. 更新聚类中心:计算每个簇中数据点的平均值,将这些平均值作为新的聚类中心。

  4. 重复迭代:重复步骤2和步骤3,直到聚类中心不再变化或达到预定的迭代次数。

  5. 收敛:算法在迭代过程中逐渐收敛,最终形成稳定的簇。

算法优缺点

优点

  • 简单且易于实现。
  • 可用于聚类分析、图像分割等领域。
  • 在数据集较大时也能表现出色。

缺点

  • 对初始簇中心的选择敏感,可能会导致陷入局部最优解。
  • 不适用于非球形簇或者簇的大小差异较大的情况。

KMeans函数的参数

在使用KMeans函数时,您可以调整多个参数来控制算法的行为和结果。以下是一些常用的参数:

  • n_clusters:簇的数量,也就是您希望将数据分成多少个簇。这是KMeans算法中最重要的参数之一。

  • init:初始化方法,用于选择初始的聚类中心。常用的方法包括’k-means++‘(基于数据点分布的方法)和’random’(随机选择)。

  • max_iter:最大迭代次数,指定算法运行的最大迭代次数。

  • tol:收敛阈值,当聚类中心的变化小于该阈值时,算法将停止迭代。

  • random_state:随机种子,用于控制随机初始化,以便结果可以重复。

from sklearn.cluster import KMeans
import numpy as np

# 创建一些示例数据
data = np.array([[1, 2], [2, 3], [8, 7], [10, 9], [5, 6], [9, 8]])

# 初始化KMeans模型
kmeans = KMeans(n_clusters=2, init='k-means++', max_iter=100, random_state=42)

# 训练模型并得到预测结果
kmeans.fit(data)
labels = kmeans.labels_

# 输出每个数据点的所属簇
print("数据点所属簇:", labels)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wdwc2

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值