决策树分类器(DecisionTreeClassifier)简介
DecisionTreeClassifier
是Scikit-learn库中的一个分类器类,它实现了决策树算法,用于处理分类问题。决策树是一种基本的监督学习算法,通过对输入数据集进行递归地划分,每个划分都将数据划分为更具体的类别。在训练过程中,决策树根据数据特征来构建树形结构,每个内部节点代表一个特征,每个叶节点代表一个类别。
信息熵(Entropy)和基尼系数(Gini Index)
信息熵和基尼系数是两种常用的衡量决策树划分标准的指标。它们用于度量节点的纯度,帮助决策树在每个节点选择最优的特征进行划分。
信息熵(Entropy)
信息熵是度量样本集合纯度的指标。当一个集合中的样本都属于同一类别时,熵最小为0;当样本均匀分布在各个类别时,熵最大为1。通过最小化信息熵,决策树能够使得每个划分都尽可能地纯净,有助于更好地分类。
信息熵的计算公式为:
其中,表示样本集合中属于第i类的样本数,C表示类别的个数,|S|表示样本集合的总样本数。
基尼系数(Gini Index)
基尼系数是另一种衡量样本集合纯度的指标。与信息熵类似,基尼系数也在0到1之间取值。基尼系数越小,表示集合纯度越高。
基尼系数的计算公式为:
其中,表示样本集合中属于第i类的样本数,C表示类别的个数,|S|表示样本集合的总样本数。
DecisionTreeClassifier
构造函数参数说明
criterion
参数
criterion
参数用于指定决策树划分标准,即衡量节点纯度的方法。常见的取值有两种:‘gini’和’entropy’。'gini’使用基尼系数来度量不纯度,而’entropy’使用信息熵来度量不纯度。
示例代码:
from sklearn.tree import DecisionTreeClassifier
# 使用'gini'作为划分标准的决策树分类器
clf_gini = DecisionTreeClassifier(criterion='gini')
# 使用'entropy'作为划分标准的决策树分类器
clf_entropy = DecisionTreeClassifier(criterion='entropy')
max_depth
参数
max_depth
参数用于控制决策树的最大深度,限制树的生长。设置max_depth
可以有效地防止决策树过拟合训练数据。
示例代码:
from sklearn.tree import DecisionTreeClassifier
# 设置最大深度为3的决策树分类器
clf = DecisionTreeClassifier(max_depth=3)
random_state
参数
random_state
参数用于控制随机数生成器的种子,保证每次运行得到的结果一致。在调参过程中,如果不固定random_state
,每次运行可能得到不同的结果,这样不利于调试和比较。
示例代码:
from sklearn.tree import DecisionTreeClassifier
# 使用固定随机数种子的决策树分类器
clf = DecisionTreeClassifier(random_state=
42)
DecisionTreeClassifier
的训练与预测
from sklearn.tree import DecisionTreeClassifier
# 创建决策树分类器
clf = DecisionTreeClassifier()
# 训练分类器
clf.fit(X_train, y_train)
# 预测
y_pred = clf.predict(X_test)