1.空间金字塔池化
2.比较常用的Region Proposal方法有:SelectiveSearch(SS,选择性搜索)、Edge Boxes(EB)
3.Edge Boxes(EB)
4.边框回归(Bounding Box Regression):是对Region Proposal进行纠正的线性回归算法,目的是为了让Region Proposal提取到的窗口与目标窗口(Ground Truth)更加吻合。
5/SelectiveSearch(SS,选择性搜索)选择搜索算法观点:图像中物体可能存在的区域应该是有某些相似性或者连续性的,因此选择搜索采用子区域合并的方法进行提取边界框bounding box
6.分类器Adaboost,SVM,Decision Tree
进行Ensemble 进行集成,各取所长融合优点
7.
如何评价P-R曲线:
1)如果一个曲线被另一个曲线包围,那么被包围的曲线更差些
2)两者有重叠,那就是判断曲线下面积的大小,但不太容易估算
3)找平衡点,就是找到准确率=召回率的点
4)F1度量,F 1 = 2 P R / ( P + R )
8.AP(Average Precision)平均精度:计算平均的检测精度,用于衡量检测器在每个类别上的性能好坏
mAP(mean Average Precision)平均精度的均值
mAP更多用于评价多目标的检测器性能,衡量检测器在所有类别上的性能好坏,
即得到每个类别的AP值后再取所有类别的平均值。
实际多类别分类任务中,随着选定的样本越来越多,recall会越来越高,而precision会越来越低,recall为横轴,precision为纵轴就可以得到总体为下降趋势的P-R曲线。
recall 查全率 也有翻译成召回率的
precision 查准率
直接耍流氓上图,这就过分了
先解释一下T F就是我们高中英语是非题的对和错
P :positive 积极的,阳性的
N:negtive 消极的
现在我们去做是非题,第一道题呢,原本是对的,我猜它是对的(我预测对了),就称之为TP
第二道题,原本也是对的,我猜它是错的(我预测错了),称之为FN
第三道题,原本是错的,我猜它是错的(我预测对了),称之为TN
第四道题,原本是错的,我猜它是对的(我预测错了),称之为FP
总结一下哈 找下相同点,我们发现啊 预测对了 就有个T,预测错了呢 就是F
那我们再看看啊,错的 猜错的
对的 猜对的 都是有T吧,我猜考了100,真的考了100开心吧积极吧那就是TP
我估计刚及格,发下来还是及格,都蛮悲观的满消极的吧 那就是TN
可以同样类比,开心与难过
接下里看precision
准确率= 原来就是对的(我预测对了)TP ➗ 我以为的(预测的)对的(TP+FP)
查全率 = 原来就是对的(我预测对了)TP ➗ 原来都是对的题目(TP+FN)