Fast Thick Cloud Removal for Multi-Temporal Remote Sensing Imagery via Representation Coefficien论文翻译

基于表征系数全变差的多时相遥感影像快速厚云去除

摘要: 尽管厚云去除是一项复杂的任务,但过去几十年见证了基于张量补全技术的显著发展。然而,这些技术通常需要大量的计算资源,并可能出现棋盘效应。本文提出了一种新颖的技术,通过使用表示系数全变差(RCTV),在分解数据上施加全变差正则化,以解决这一具有挑战性的任务。所提方法在高速度下增强了云去除性能,同时有效保留了纹理。实验结果证实了我们方法在恢复图像纹理方面的效率,显示出其优于最先进技术的表现。

关键词: 厚云去除;表示系数全变差;低秩模型

1. 引言

        厚云去除 [1] 是遥感图像中普遍面临的挑战,严重影响信息提取的质量和准确性 [2,3]。虽然薄云去除可以通过图像去雾 [4]、插值 [5] 或机器学习 [6] 算法来解决,但厚云则带来了更复杂的问题,使这些算法显得不足 [7]。在同一场景下,不同时刻拍摄的遥感图像可能提供互补信息,用于重建被厚云遮挡的像素。因此,从多时相遥感图像中有效去除厚云是遥感图像处理中的一个重要研究课题 [8–10]。

        从多时相遥感图像中去除厚云是一项艰巨的任务,近年来有多种方法应运而生。一种有前景的技术是将此问题框定为数据补全问题。在多时相厚云去除的背景下,给定 h × w 像素的 c 通道图像 Y ∈ R^(h×w×c×t),该图像是在 t 个时间戳下捕获的,Y 被视为部分观察数据,其中被厚云遮挡的像素为缺失值。因此,索引集 Ω 收集了已观察到的像素的索引(即未被云覆盖

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值