刚刚学习神经网络的新手小白,本文是在我学习matlab案例的过程中写的,内容大多都是按照我自己的理解写的,如有不对欢迎批评指正。
Matlab案例:Compare Deep Learning Networks for Credit Default Prediction- MATLAB & Simulink
一、查看原始数据
案例中给出的原始数据如下,主要包含5列,是一个table文件
每一列数据的详细解释如下:
从上面我们可以看出ScoreGroup就是他的分类标签,主要有三类:‘low Risk’,‘Hight Risk’, ‘Medium Risk’三类
二、制作标签
在案例中提到如果想要训练神经网络,需要将标签转换为one-hot encoded vectors(为什么必须要转换为这个形式?所有神经网络训练都要将标签转换为这种形式吗?)
2024年4月10日,最近拜读了赵小川教授的《深度学习理论及实战(Matlab版)》从中得到了启发,为何要将标签转为独热编码我想原因是这样的:在有监督学习中,面对多分类问题,采用的数据格式就是数据+标签,而标签之所以采用独热编码,是因为多分类任务中,实现分类其实就是最后的输出层中某一个节点被激活,而其他节点未被激活,被激活的节点就是1,未被激活的节点就是0,所以多分类问题输出的类型其实就是独热编码,因此需要在制作标签时与输出一致便于计算损失函数。
通过这个代码获取文字标签的热向量:
riskGroup = onehotencode(tbl.ScoreGroup,2);