ResNet神经网络自学笔记——matlab

本文介绍了新手如何使用MATLAB进行信用违约预测的案例,包括数据预处理(特别是one-hot编码标签)、划分训练集、测试集和验证集,以及构建ResNet神经网络模型的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

刚刚学习神经网络的新手小白,本文是在我学习matlab案例的过程中写的,内容大多都是按照我自己的理解写的,如有不对欢迎批评指正。

Matlab案例:Compare Deep Learning Networks for Credit Default Prediction- MATLAB & Simulink

 一、查看原始数据

案例中给出的原始数据如下,主要包含5列,是一个table文件

每一列数据的详细解释如下:

 

 从上面我们可以看出ScoreGroup就是他的分类标签,主要有三类:‘low Risk’,‘Hight Risk’, ‘Medium Risk’三类

二、制作标签

在案例中提到如果想要训练神经网络,需要将标签转换为one-hot encoded vectors(为什么必须要转换为这个形式?所有神经网络训练都要将标签转换为这种形式吗?)

2024年4月10日,最近拜读了赵小川教授的《深度学习理论及实战(Matlab版)》从中得到了启发,为何要将标签转为独热编码我想原因是这样的:在有监督学习中,面对多分类问题,采用的数据格式就是数据+标签,而标签之所以采用独热编码,是因为多分类任务中,实现分类其实就是最后的输出层中某一个节点被激活,而其他节点未被激活,被激活的节点就是1,未被激活的节点就是0,所以多分类问题输出的类型其实就是独热编码,因此需要在制作标签时与输出一致便于计算损失函数。

通过这个代码获取文字标签的热向量:

riskGroup = onehotencode(tbl.ScoreGroup,2);
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值