yolov9学习笔记

一、准备工作

1、github下载yolov9代码

WongKinYiu/yolov9: Implementation of paper - YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information (github.com)

2、下载anaconda

国内镜像下载:

Index of /anaconda/archive/ | 清华大学开源软件镜像站 | Tsinghua Open Source Mirroricon-default.png?t=N7T8https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/

建议使用国内镜像下载,下载速度较快

官网下载:

Free Download | Anacondaicon-default.png?t=N7T8https://www.anaconda.com/download/

3、下载cuda

查看显卡可支持的最高cuda版本,下载时不能超过这个版本

下载地址:

CUDA Toolkit - Free Tools and Training | NVIDIA Developericon-default.png?t=N7T8https://developer.nvidia.com/cuda-toolkit

然后下载cudnn

cuDNN 9.0.0 下载 |NVIDIA 开发人员icon-default.png?t=N7T8https://developer.nvidia.com/cudnn-downloads

对下载的cuDNN压缩包解压后出现如下三个文件夹

然后找到cuda的安装路径,我的安装路径如下:

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8

分别将cuDNN三个文件夹的内容分别复制到cuda对应的文件夹里面。

下载完成后,搭建环境配置,在系统环境变量中加入

中间一个是安装时自己加入的环境配置,不用管,加入以下两个环境变量即可,我的变量值是下面两个

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp

 打开终端输入nvcc -V

查看是否配置成功

这样便是配置成功

3、下载pytorch

下载网站:

Previous PyTorch Versions | PyTorchicon-default.png?t=N7T8https://pytorch.org/get-started/previous-versions/

选择与自己电脑匹配的cuda版本

4、验证pytorch版本是否合适

打开pycharm新建窗口,新建项目输入以下代码验证

import torch

print(torch.__version__)  # 查看torch当前版本号

print(torch.version.cuda)  # 编译当前版本的torch使用的cuda版本号

print(torch.cuda.is_available())  # 查看当前cuda是否可用于当前版本的Torch,如果输出True,则表示可用

二、下载yolov9所需要的环境

1、打开anaconda终端

cd到yolov9所在的目录

新建python环境,使用python环境,下载yolov9所需要的环境,运行一下指令

pip install requirements.txt

三、正式工作

1、打开pycharm,新建项目,打开yolov9文件夹

打开detect.py文件,需改以下地方

这是权重配置

这里是待检测文件,下载的yolov9代码中有一张图片,可以用来练习

图片在data/images下

复制文件地址,替换detect.py下的代码

这是数据集地址,官网下载的代码中是没有coco128.yaml数据集的,替换成coco.yaml,下文详细说明。

default中默认为cpu,写入0为使用gpu

(1)数据集可使用自带的coco数据集,在pycharm中打开data文件夹

复制路径coco数据集路径

我使用的是绝对路径,复制路径后到detect.py中替换数据集地址

(2)权重下载yolov9的 yolov9-c-converted.pt 即可

下载后的权重文件放入yolov9的文件夹中,引用地址替换权重配置那个地方

我修改完的代码如下:

运行detect.py文件检测结果在runs\detect\exp文件下

四、训练模型

1.制作数据集,可参考我的另一篇文章:yolo数据集制作-CSDN博客

2.将数据集放在yolov9文件夹下,建议放在data文件下,分类好文件

3.打开train_duan.py文件,需修改以下几个地方

这里是放置预训练权重的地方,从github下载的yolov9-c-converted.pt。

这里是放置模型的地方,文件在以下这个路径里面

D:\yolov9-main\models\detect\yolov9-c.yaml

这里是放置待训练数据集的地方,即上文制作的数据集。

这里需要把

hyp.scratch-low.yaml改成hyp.scratch-high.yaml,因为从官网下载是没有这个low文件的只有high文件,在以下这个路径
yolov9-main/data/hyps/hyp.scratch-high.yaml

这里是需要训练多少次,根据需要需改。

这是一次放入多少张图片到gpu训练的,根据自己电脑情况修改,过大可能导致报错。

输入0即使用gpu训练模型

指数据装载时cpu所使用的线程数,默认为8。

以下是我修改过后的代码

完成后开始运行代码,至此训练模型结束,结果在runs\detect\exp文件下。

行文至此,

潜心学习,戒骄戒躁。

以上便是我的学习笔记,希望我的笔记可以帮助大家

注:我也是刚学习yolo算法,如果有错的地方请见谅!!!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值