高等数学·偏导数

文章详细阐述了多元函数的可微性判断,包括一阶偏导数的计算、方向导数的定义及其与梯度的关系,以及隐函数的求导方法。还讨论了变量替换在转换方程中的应用,并介绍了寻找极值点的一阶和二阶导数判别法,以及拉格朗日乘数法在约束条件下求极值的应用。
摘要由CSDN通过智能技术生成

题型归纳

1. 可微

判断可微
方法一:若函数可微,则下列极限应为0
lim ⁡ Δ x → 0 , Δ y → 0 f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) − f x ( x 0 , y 0 ) Δ x − f y ( x 0 , y 0 ) Δ y Δ x 2 + Δ y 2 \lim_{\Delta x\to 0,\Delta y\to 0}\frac{f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0)-f_x(x_0,y_0)\Delta x-f_y(x_0,y_0)\Delta y}{\sqrt{\Delta x^2+\Delta y^2}} Δx0,Δy0limΔx2+Δy2 f(x0+Δx,y0+Δy)f(x0,y0)fx(x0,y0)Δxfy(x0,y0)Δy
方法二:判断一阶偏导是否连续,即 f x , f y f_x,f_y fx,fy ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续时函数可微

判断不可微
方法一:连续性推导。若函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处不连续,则函数不可微
方法二:偏导存在性推导。若函数在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处的偏导有一个不存在,则函数不可微

一阶偏导数连续性、可微、连续性和可偏导的关系为

一阶偏导数连续
可微
连续
偏导数存在

2. 一阶偏导

方法:下列极限是某点出的一阶偏到
f x ( x 0 , y 0 ) = lim ⁡ x → 0 f ( x 0 + x , y 0 ) − f ( x 0 , y 0 ) x f_x(x_0,y_0)=\lim_{x\to 0}\frac{f(x_0+x,y_0)-f(x_0,y_0)}{x} fx(x0,y0)=x0limxf(x0+x,y0)f(x0,y0)
f y ( x 0 , y 0 ) = lim ⁡ y → 0 f ( x 0 , y 0 + y ) − f ( x 0 , y 0 ) y f_y(x_0,y_0)=\lim_{y\to 0}\frac{f(x_0,y_0+y)-f(x_0,y_0)}{y} fy(x0,y0)=y0limyf(x0,y0+y)f(x0,y0)
注意: δ f δ y ( x , 0 ) ≠ lim ⁡ y → 0 δ f δ y ( x , y ) \frac{\delta f}{\delta y}(x,0)\neq\lim_{y\to 0}\frac{\delta f}{\delta y}(x,y) δyδf(x,0)=limy0δyδf(x,y),而相等的时候说明 f y f_y fy y y y处可导

3. 方向导数

方法一:定义法,一般适用于分段函数(点)
D u f = lim ⁡ t → 0 f ( x 0 + t u 1 , y 0 + t u 2 ) − f ( x 0 , y 0 ) t D_uf=\lim_{t\to 0}\frac{f(x_0+tu_1,y_0+tu_2) - f(x_0,y_0)}{t} Duf=t0limtf(x0+tu1,y0+tu2)f(x0,y0)
方法二:梯度法,适用于连续点
D u f = ∇ f ⋅ u ⃗ D_uf=\nabla f·\vec{u} Duf=fu
二级结论:可微函数 f f f P 0 P_0 P0处可微,则 ∀ u ⃗ , ( D u f ) p 0 \forall \vec{u},(D_uf)_{p_0} u ,(Duf)p0存在

4. 隐函数

方法一:公式法
δ x δ y = − F y F x \frac{\delta x}{\delta y}=-\frac{F_y}{F_x} δyδx=FxFy
方法二:同时求导,如 F ( x − y , y − z ) = 0 F(x-y,y-z)=0 F(xy,yz)=0,求 δ z δ x \frac{\delta z}{\delta x} δxδz。可以将 z z z视为 x , y x,y xy的函数处理

F
u
v
x
y
z
x
y

5. 变量替换

例. 已知 { x = u v y = 1 2 ( u 2 − v 2 ) \begin{cases}x = uv \\y=\frac12(u^2-v^2) \end{cases} {x=uvy=21(u2v2) ( δ z δ x ) 2 + ( δ z δ y ) 2 = 1 x 2 + y 2 (\frac{\delta z}{\delta x})^2+(\frac{\delta z}{\delta y})^2 = \frac{1}{\sqrt{x^2+y^2}} (δxδz)2+(δyδz)2=x2+y2 1变成关于 u , v u,v u,v的方程

提示: Z u = v Z x + u Z y Z_u=vZ_x+uZ_y Zu=vZx+uZy

Z
x
y
u
v

方法:用连式法则表示出 Z u , Z v Z_u,Z_v Zu,Zv,通过解方程可以将 Z x , Z y Z_x,Z_y ZxZy Z u , Z v Z_u,Z_v Zu,Zv表示,代入方程即可

6. 曲线的切平面

切平面: F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0 Fx(xx0)+Fy(yy0)+Fz(zz0)=0
法向量: ( F x , F y , F z ) (F_x,F_y,F_z) (Fx,Fy,Fz)
方法:统一化成隐函数,用梯度做

7. 极值问题

方法一:一、二阶导判别法
适用于:没有限制条件,有界图形
操作:找到满足 f x = f y = 0 f_x=f_y=0 fx=fy=0的所有点,代入二阶导判别验证属性。边界上的点单独讨论。最终在求得值中综合判断极值
注意:二阶导验证中, f x x f y y − f x y 2 = 0 f_{xx}f_{yy}-f^2_{xy}=0 fxxfyyfxy2=0时(二阶导验证无效),有两种处理办法
1.将函数经过变换,如配方,将函数变成可以直接判断极值的形式(一般是二次函数)
2.找到两条不同的直线逼近,如果两条直线逼近的负号不同(或者沿一条直线,两边逼近一正一负),说明此点不是极值点
例. f ( x , y ) = 2 ( y − x 2 ) 2 − 1 7 x 7 − y 2 f(x,y)=2(y-x^2)^2-\frac17x^7-y^2 f(x,y)=2(yx2)271x7y2在点 ( 0 , 0 ) (0,0) (0,0)满足一阶导为0,判断此点是否为局部极值点。
提示:沿 y = x 2 y=x^2 y=x2 x = 0 x=0 x=0逼近的结果一正一负

方法二:拉格朗日数乘法判断极值
适用于:有限定条件;图形边界上点在函数中的极值
注意:拉格朗日找到的极值就是边界上的极值,结果只用考虑端点。用数乘法求出的点最好带进 f x x , f x x f y y − f x y 2 f_{xx},f_{xx}f_{yy}-f^2_{xy} fxx,fxxfyyfxy2验证点的属性

未完待续… …

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值