【HHO-KELM预测】基于哈里斯鹰算法优化核极限学习机回归预测研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

摘要:核极限学习机(KELM)作为一种高效的单隐层前馈神经网络,在回归预测领域展现出卓越的性能。然而,KELM的预测精度受到核函数参数和正则化系数的影响,传统方法依赖于经验或试错法选择参数,导致优化效率低下。本文提出一种基于哈里斯鹰优化算法(HHO)的KELM回归预测模型(HHO-KELM),旨在利用HHO的全局寻优能力自动搜索KELM的最佳参数组合,提升模型的泛化能力和预测精度。本文详细阐述了HHO算法的原理、KELM算法的数学模型,以及HHO-KELM的实现步骤。通过实验验证,HHO-KELM在多个基准数据集上表现出优于传统KELM和其他优化算法(如遗传算法GA、粒子群算法PSO)的性能,证明了该方法的有效性和优越性。

关键词:核极限学习机;哈里斯鹰优化算法;回归预测;参数优化;机器学习

1 引言

在当今大数据时代,准确有效的回归预测在各个领域都扮演着至关重要的角色,例如金融市场预测、环境污染监控、能源需求预测以及工业过程控制等。传统的线性回归模型在处理非线性问题时往往表现不佳,而各种机器学习方法,特别是基于神经网络的模型,由于其强大的非线性拟合能力,在回归预测领域得到了广泛应用。

极限学习机(Extreme Learning Machine, ELM)作为一种单隐层前馈神经网络,因其训练速度快、泛化能力强等优点,受到了广泛关注。ELM随机初始化输入权重和偏置,并通过最小二乘法求解输出权重,避免了传统神经网络复杂的迭代优化过程,从而显著提高了训练效率。然而,ELM在处理复杂问题时,可能需要大量的隐藏层节点才能获得满意的精度,这增加了模型的复杂度。

核极限学习机(Kernel Extreme Learning Machine, KELM)是ELM的改进版本,它引入了核函数,将输入数据映射到高维特征空间,从而提高了模型的非线性拟合能力。KELM无需随机选择隐层节点,而是直接通过核函数计算输出权重,简化了模型结构,提高了训练效率。然而,KELM的预测精度高度依赖于核函数的参数和正则化系数的选择。传统方法往往依赖于经验或试错法来确定这些参数,这不仅耗时耗力,而且难以保证获得最优参数组合。

为了解决上述问题,本文提出一种基于哈里斯鹰优化算法(Harris Hawks Optimization, HHO)的KELM回归预测模型(HHO-KELM)。HHO算法是一种新兴的元启发式算法,模拟了哈里斯鹰的捕食行为,具有全局寻优能力强、收敛速度快、鲁棒性好等优点。本文利用HHO算法自动搜索KELM的最佳核函数参数和正则化系数,从而提高模型的泛化能力和预测精度。

2 相关研究

近年来,国内外学者对KELM及其优化方法进行了广泛研究。

  • KELM及其应用

    : Huang 等人首次提出了KELM算法,并证明其在分类和回归问题中具有良好的性能。随后,KELM被广泛应用于各个领域,如图像识别、故障诊断、电力系统预测等。

  • KELM参数优化

    : 为了提高KELM的预测精度,研究者们提出了多种参数优化方法。例如,使用遗传算法(GA)优化KELM的参数,利用粒子群算法(PSO)优化KELM的核函数参数,采用差分进化算法(DE)优化KELM的正则化系数等。这些方法虽然取得了一定的效果,但仍存在一些不足之处,例如容易陷入局部最优、收敛速度慢等。

  • HHO算法及其应用

    : Heidari 等人提出了哈里斯鹰优化算法(HHO),该算法具有全局寻优能力强、收敛速度快、鲁棒性好等优点。HHO算法已成功应用于多个领域,如特征选择、参数优化、路径规划等。

综上所述,KELM作为一种高效的机器学习方法,在回归预测领域具有广泛的应用前景。然而,KELM的预测精度受到核函数参数和正则化系数的影响。传统优化方法难以保证获得最优参数组合。因此,本文提出基于HHO算法的KELM回归预测模型,旨在利用HHO的全局寻优能力自动搜索KELM的最佳参数组合,从而提高模型的泛化能力和预测精度。

3 HHO-KELM 模型

本文提出的 HHO-KELM 模型利用哈里斯鹰优化算法 (HHO) 自动搜索 KELM 的最佳核函数参数 σσ 和正则化系数 CC。具体步骤如下:

  1. 初始化: 初始化哈里斯鹰种群,每个哈里斯鹰代表一组 KELM 的参数组合 (σσ, CC)。设定 HHO 的最大迭代次数和种群规模。确定参数 σσ 和 CC 的搜索范围。

  2. 适应度函数: 将 KELM 的回归预测误差(例如均方根误差 RMSE)作为 HHO 的适应度函数。对于每个哈里斯鹰,将其对应的 (σσ, CC) 应用于 KELM 模型,并在训练集上训练模型,在验证集上计算 RMSE。 RMSE 越小,表明该哈里斯鹰的适应度越高。

  3. HHO 迭代: 根据哈里斯鹰优化算法的勘探和开发阶段,更新哈里斯鹰的位置(即 KELM 的参数组合 (σσ, CC))。

  4. 评估适应度: 对于每个更新后的哈里斯鹰,重新训练 KELM 模型,并在验证集上计算 RMSE,更新哈里斯鹰的适应度。

  5. 更新最佳位置: 更新全局最佳哈里斯鹰的位置(即当前找到的最佳 KELM 参数组合 (σσ, CC))。

  6. 终止条件: 判断是否达到最大迭代次数。如果达到,则输出全局最佳哈里斯鹰的位置(即最佳 KELM 参数组合 (σσ, CC));否则,返回步骤 3,继续迭代。

  7. 测试: 使用找到的最佳 KELM 参数组合 (σσ, CC),在测试集上评估 KELM 模型的性能。

4 结论与展望

本文提出了一种基于哈里斯鹰优化算法的核极限学习机回归预测模型(HHO-KELM)。该模型利用 HHO 算法自动搜索 KELM 的最佳核函数参数和正则化系数,从而提高模型的泛化能力和预测精度。实验结果表明,HHO-KELM 模型在多个基准数据集上表现出优于传统 KELM、GA-KELM 和 PSO-KELM 的性能。

未来的研究方向可以包括:

  • HHO 算法的改进

    : 可以进一步改进 HHO 算法,例如引入自适应参数调整策略、与其他优化算法结合等,以提高其寻优能力和收敛速度。

  • KELM 模型的扩展

    : 可以将 HHO-KELM 模型应用于其他类型的 KELM,例如增量 KELM、在线 KELM 等。

  • 应用领域的拓展

    : 可以将 HHO-KELM 模型应用于更广泛的领域,例如金融市场预测、环境污染监控、能源需求预测以及工业过程控制等。

  • 多目标优化

    : 将参数优化转化为多目标优化问题,例如同时考虑预测精度和模型复杂度,从而获得更加平衡的 KELM 模型。

⛳️ 运行结果

🔗 参考文献

[1] 谢百亨,马晋芳,周泳欣,等.高光谱结合哈里斯鹰优化核极限学习机鉴别化橘红胎切片年份[J].光谱学与光谱分析, 2024, 44(5):1494-1500.

[2] 吴丁杰,温立书.一种基于哈里斯鹰算法优化的核极限学习机[J].信息通信, 2021(034-011).DOI:10.3969/j.issn.1673-1131.2021.11.015.

[3] 孙世政,刘照伟,张辉,等.基于HHO-KELM的FBG流量温度复合传感解耦[J].光学精密工程, 2022, 30(11):11.DOI:10.37188/OPE.20223011.1290.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值