✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征
脑肿瘤,作为一种严重的神经系统疾病,其早期准确的诊断对于改善患者预后至关重要。磁共振成像(MRI)因其优异的软组织对比度,成为脑肿瘤诊断和监测的标准影像学方法。然而,脑肿瘤在MRI图像上往往表现出高度的异质性,其边界模糊不清,形态各异,手动分割耗时耗力且易受主观因素影响,难以满足临床需求。因此,开发高效、准确的自动化脑肿瘤分割方法具有重要的研究意义和临床价值。
近年来,随着计算机视觉和机器学习技术的飞速发展,基于监督学习的图像分割方法在医学影像分析领域取得了显著进展。监督学习模型能够从大量带有标注的训练数据中学习肿瘤的特征,从而实现对未知图像中肿瘤区域的识别。然而,脑肿瘤的复杂性使得单一模态的MRI图像往往不足以全面描述肿瘤的特征,多模态MRI(如T1加权、T1对比增强、T2加权和FLAIR序列)提供了互补的信息,能够更全面地反映肿瘤的形态、内部结构和与周围组织的解剖关系,因此多模态MRI融合已成为脑肿瘤分割的主流方法。
传统的基于像素的脑肿瘤分割方法虽然简单易行,但由于其仅考虑单个像素的信息,容易受到噪声和局部变化的影响,难以捕捉图像的结构和空间信息。为了克服这一局限性,基于图像块(patch)的方法被提出,通过提取图像块内的特征来描述局部区域,但图像块的大小选择困难,且忽略了不同图像块之间的空间关系。超像素(Superpixel)或超体素(Supervoxel)作为一种图像预分割技术,能够将具有相似特征的相邻像素或体素聚集成具有感知意义的区域,为后续的特征提取和分类提供了更合理的单元。超体素能够有效地降低数据维度,平滑局部噪声,同时保留图像的结构信息。
将超体素技术引入多模态MRI脑肿瘤分割,能够更好地利用图像的结构信息和局部特征。传统的超体素方法主要基于强度信息进行聚类,然而,脑肿瘤的异质性使得仅凭强度信息难以准确地将肿瘤区域与正常组织区分开来。肿瘤区域通常表现出复杂的纹理特征,例如坏死区域的低信号、水肿区域的高信号以及增强区域的明显信号增强等。这些纹理信息能够更全面地描述肿瘤的内部结构和组织特征,为肿瘤的识别提供重要的判别依据。
基于上述分析,本文提出一种基于监督学习的多模态MRI脑肿瘤分割方法,该方法创新性地利用来自超体素的纹理特征。具体而言,该方法包括以下几个主要步骤:
首先,对原始多模态MRI图像进行预处理,包括颅骨去除、图像配准和强度归一化等。颅骨去除能够消除颅骨对分割的影响,图像配准将不同模态的图像对齐到同一空间,强度归一化则消除不同扫描设备和参数带来的强度差异。
其次,对预处理后的多模态MRI图像应用超体素分割算法,将图像分割成一系列具有感知意义的超体素。常用的超体素算法包括SLIC(Simple Linear Iterative Clustering)、WATERSHED等。为了充分利用多模态信息,可以考虑将不同模态的强度信息融入超体素生成过程中。
接下来,对于每一个超体素,提取来自不同模态MRI图像的纹理特征。纹理特征能够描述区域内的局部变化和空间排列规律。常用的纹理特征包括灰度共生矩阵(GLCM)、局部二值模式(LBP)、小波变换(Wavelet Transform)等。例如,可以计算每个超体素在不同模态图像上的灰度共生矩阵,并提取其相关、对比度、能量、同质性等纹理特征;或者计算超体素内像素的LBP直方图作为纹理特征。通过提取多模态图像的纹理特征,能够更全面地描述超体素的属性。
然后,将提取的超体素纹理特征作为输入,构建一个监督学习模型进行分类。常用的监督学习模型包括支持向量机(SVM)、随机森林(Random Forest)、卷积神经网络(CNN)等。在训练阶段,利用带有标注的训练数据(即已知每个超体素是否属于肿瘤区域)训练模型,使其能够学习肿瘤超体素的纹理特征模式。
最后,在测试阶段,将待分割的未知MRI图像经过预处理和超体素分割后,提取每个超体素的纹理特征,并输入到训练好的监督学习模型中进行分类。模型输出每个超体素属于肿瘤区域的概率或类别标签。根据超体素的分类结果,即可得到最终的脑肿瘤分割结果。
与传统的基于像素或图像块的方法相比,基于超体素的方法能够更有效地利用图像的结构信息和局部一致性。将纹理特征引入超体素,能够更全面地描述超体素的内部属性,克服仅基于强度的局限性,提高对脑肿瘤异质性的描述能力。多模态MRI的融合则为肿瘤的识别提供了更丰富的信息来源。因此,结合超体素、纹理特征和多模态MRI的监督学习方法,有望提高脑肿瘤分割的准确性和鲁棒性。
然而,该方法也存在一些挑战和未来的研究方向。首先,超体素分割的质量对后续特征提取和分类至关重要,如何生成能够更好地反映肿瘤边界和内部结构的超体素是一个关键问题。可以探索更高级的超体素分割算法,或将肿瘤特征融入超体素生成过程。其次,纹理特征的选取和组合方式多样,如何选择最有判别力的纹理特征以及如何有效地融合不同模态的纹理特征需要进一步研究。可以利用特征选择或特征学习的方法优化纹理特征的使用。此外,监督学习模型的选择和参数调优也会影响分割性能,可以尝试不同的模型并进行交叉验证以找到最优配置。最后,由于医学影像标注的困难性,获取大规模高质量的标注数据是一个挑战,可以探索半监督学习或弱监督学习方法来缓解数据标注的压力。
总而言之,基于监督学习的多模态MRI脑肿瘤分割,使用来自超体素的纹理特征,是一种具有潜力的脑肿瘤自动化分割方法。该方法充分利用了超体素的结构信息、纹理特征的判别能力以及多模态MRI的互补信息,有望提高脑肿瘤分割的准确性和效率。未来的研究可以进一步优化超体素生成、纹理特征提取和监督学习模型,以应对脑肿瘤分割的复杂性和挑战,为临床脑肿瘤的诊断和治疗提供更有力的支持。随着深度学习技术的快速发展,将超体素、纹理特征与深度学习模型相结合,例如基于超体素的图卷积网络(Graph Convolutional Network),也可能为脑肿瘤分割带来新的突破。
⛳️ 运行结果
🔗 参考文献
[1] 方玲玲,王欣.基于超体素的多模态MRI脑肿瘤分割方法:CN202011276427.6[P].CN112435261A[2025-04-19].
[2] 吴飞.基于弱监督的大脑磁共振图像分割的研究[D].东南大学,2020.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇